
Project X-Ray Documentation
Release 0.0-3276-gaff076b4

SymbiFlow Team

Oct 23, 2020

Introduction

1 Introduction 3
1.1 Collected information . 3
1.2 Methodology . 3
1.3 Important Parts . 4

2 Getting Started 5
2.1 Project X-Ray . 5
2.2 Quickstart Guide . 5
2.3 C++ Development . 7
2.4 Process . 8
2.5 Database . 8
2.6 Current Focus . 9
2.7 Contributing . 9

3 Xilinx 7-series Architecture 11
3.1 Overview . 11
3.2 Configuration . 11
3.3 Bitstream format . 13
3.4 Interconnect PIPs . 17
3.5 Distributed RAMs (DRAM / SLICEM) . 18
3.6 Glossary . 21
3.7 References . 23
3.8 Contributor Covenant Code of Conduct . 24
3.9 Guide to updating the Project X-Ray docs . 25

4 Database Development Process 29
4.1 Contributing to Project X-Ray . 29
4.2 Adding New Fuzzer . 30
4.3 Fuzzers . 33
4.4 Minitests . 43
4.5 Tools . 55

5 Database 57
5.1 Description . 57
5.2 Common database files . 58
5.3 Part specific database files . 69

i

Index 77

ii

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Project X-Ray documents the Xilinx 7-Series FPGA architecture to enable development of open-source tools. Our
goal is to provide sufficient information to develop a free and open Verilog to bitstream toolchain for these devices.

Introduction 1

https://github.com/SymbiFlow/prjxray
http://www.xilinx.com/

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

2 Introduction

CHAPTER 1

Introduction

Project X-Ray documents the Xilinx 7-Series FPGA architecture to enable the development of open-source tools. Our
goal is to provide sufficient information to develop a free and open Verilog to bitstream toolchain for these devices.

The project is a part of SymbiFlow Toolchain. SymbiFlow uses the obtained information about the chip in Architecture
Definitions project, which allows for creating bitstreams for many architectures including 7-Series devices.

1.1 Collected information

To allow the usage of Xilinx FPGAs in SymbiFlow toolchain we collect some important data about the Xilinx chips.
The needed information includes:

• Architecture description:

– chip internals

– timings

• Bitstream format:

– metadata (i.e. header, crc)

– configuration bits

Final results are stored in the database which is further used by the Architecture Definitions project. The whole
database is described in the dedicated chapter.

1.2 Methodology

The most important element of the project are fuzzers - scripts responsible for obtaining information about the chips.
Their name comes from the fact that they use a similar idea to Fuzz testing. Firstly, they generate a huge amount of
designs in which the examined chip property is either enabled or disabled. By comparing the differences in the final
bitstream obtained from vendor tools, we can detect relations between bits in the bitstream and provided functionalities.

3

https://github.com/SymbiFlow/prjxray
http://www.xilinx.com/
https://symbiflow.readthedocs.io/
https://github.com/SymbiFlow/symbiflow-arch-defs
https://github.com/SymbiFlow/symbiflow-arch-defs
https://github.com/SymbiFlow/symbiflow-arch-defs
https://en.wikipedia.org/wiki/Fuzzing

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

However, some of the fuzzers works differently, i.e. they just creating the database structure, the whole idea is similar
and rely on the output produced by the vendor tools.

All fuzzers are described in the dedicated chapter.

1.3 Important Parts

The important parts of the Project X-Ray are:

• minitests - designs that can be viewed by a human in Vivado to better understand how to generate more useful
designs.

• experiments - similar to minitests except for the fact that they are only useful for a short time.

• tools & libs - they convert the resulting bitstreams into various formats.

• utils - tools that are used but still require some testing

4 Chapter 1. Introduction

CHAPTER 2

Getting Started

2.1 Project X-Ray

Documentation Status License Build Status Tests

Database Generation Artix 7 Database Kintex 7 Database Zynq 7 Database

Documenting the Xilinx 7-series bit-stream format.

This repository contains both tools and scripts which allow you to document the bit-stream format of Xilinx 7-series
FPGAs.

More documentation can be found published on prjxray ReadTheDocs site - this includes;

• Highlevel Bitstream Architecture

• Overview of DB Development Process

2.2 Quickstart Guide

Instructions were originally written for Ubuntu 16.04. Please let us know if you have information on other distribu-
tions.

2.2.1 Step 1:

Install Vivado 2017.2. If you did not install to /opt/Xilinx default, then set the environment variable
XRAY_VIVADO_SETTINGS to point to the settings64.sh file of the installed vivado version, ie

export XRAY_VIVADO_SETTINGS=/opt/Xilinx/Vivado/2017.2/settings64.sh

Do not source the settings64.sh in your shell, since this adds directories of the Vivado installation at the begin-
ning of your PATH and LD_LIBRARY_PATH variables, which will likely interfere with or break non-Vivado
applications in that shell. The Vivado wrapper utils/vivado.sh makes sure that the environment variables from

5

http://prjxray.readthedocs.org/
https://github.com/SymbiFlow/prjxray/blob/master/LICENSE
https://travis-ci.com/github/SymbiFlow/prjxray
http://storage.googleapis.com/symbiflow-badges/prjxray/tests.html
http://storage.googleapis.com/symbiflow-badges/prjxray/database.html
http://storage.googleapis.com/symbiflow-badges/prjxray/artix7.html
http://storage.googleapis.com/symbiflow-badges/prjxray/kintex7.html
http://storage.googleapis.com/symbiflow-badges/prjxray/zynq7.html
https://prjxray.readthedocs.io/en/latest/
https://prjxray.readthedocs.io/en/latest/architecture/overview.html
https://prjxray.readthedocs.io/en/latest/db_dev_process/index.html

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

XRAY_VIVADO_SETTINGS are automatically sourced in a separate shell that is then only used to run Vivado to
avoid these problems.

Why 2017.2? Currently the fuzzers only work on 2017.2, see Issue #14 on prjxray.

Is 2017.2 really required? Yes, only 2017.2 works. Until Issue #14 is solved, only 2017.2 works and will be
supported.

2.2.2 Step 2:

Pull submodules:

git submodule update --init --recursive

2.2.3 Step 3:

Install CMake:

sudo apt-get install cmake # version 3.5.0 or later required,
for Ubuntu Trusty pkg is called cmake3

2.2.4 Step 4:

Build the C++ tools:

make build

2.2.5 Step 5:

Choose one of the following options:

(Option 1) - Install the Python environment locally

sudo apt-get install virtualenv python3 python3-pip python3-virtualenv python3-yaml
make env

(Option 2) - Install the Python environment globally

sudo apt-get install python3 python3-pip python3-yaml
sudo -H pip3 install -r requirements.txt

This step is known to fail with a compiler error while building the pyjson5 library when using Arch Linux and
Fedora. If this occurs, pyjson5 needs one change to build correctly:

git clone https://github.com/Kijewski/pyjson5.git
cd pyjson5
sed -i 's/char *PyUnicode/const char *PyUnicode/' src/_imports.pyx
sudo make

This might give you an error about sphinx_autodoc_typehints but it should correctly build and install pyj-
son5. After this, run either option 1 or 2 again.

6 Chapter 2. Getting Started

https://github.com/SymbiFlow/prjxray/issues/14

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

2.2.6 Step 6:

Always make sure to set the environment for the device you are working on before running any other commands:

source settings/artix7.sh

2.2.7 Step 7:

(Option 1, recommended) - Download a current stable version (you can use the Python API with a pre-generated
database)

./download-latest-db.sh

(Option 2) - (Re-)create the entire database (this will take a very long time!)

cd fuzzers
make -j$(nproc)

2.2.8 Step 8:

Pick a fuzzer (or write your own) and run:

cd fuzzers/010-clb-lutinit
make -j$(nproc) run

2.2.9 Step 9:

Create HTML documentation:

cd htmlgen
python3 htmlgen.py

2.3 C++ Development

Tests are not built by default. Setting the PRJXRAY_BUILD_TESTING option to ON when running cmake will
include them:

cmake -DPRJXRAY_BUILD_TESTING=ON ..
make

The default C++ build configuration is for releases (optimizations enabled, no debug info). A build configuration for
debugging (no optimizations, debug info) can be chosen via the CMAKE_BUILD_TYPE option:

cmake -DCMAKE_BUILD_TYPE=Debug ..
make

The options to build tests and use a debug build configuration are independent to allow testing that optimizations do
not cause bugs. The build configuration and build tests options may be combined to allow all permutations.

2.3. C++ Development 7

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

2.4 Process

The documentation is done through a “black box” process were Vivado is asked to generate a large number of designs
which then used to create bitstreams. The resulting bit streams are then cross correlated to discover what different bits
do.

2.4.1 Parts

Minitests

There are also “minitests” which are designs which can be viewed by a human in Vivado to better understand how to
generate more useful designs.

Experiments

Experiments are like “minitests” except are only useful for a short period of time. Files are committed here to allow
people to see how we are trying to understand the bitstream.

When an experiment is finished with, it will be moved from this directory into the latest “prjxray-experiments-archive-
XXXX” repository.

Fuzzers

Fuzzers are the scripts which generate the large number of bitstream.

They are called “fuzzers” because they follow an approach similar to the idea of software testing through fuzzing.

Tools & Libs

Tools & libs are useful tools (and libraries) for converting the resulting bitstreams into various formats.

Binaries in the tools directory are considered more mature and stable then those in the utils directory and could be
actively used in other projects.

Utils

Utils are various tools which are still highly experimental. These tools should only be used inside this repository.

Third Party

Third party contains code not developed as part of Project X-Ray.

2.5 Database

Running the all fuzzers in order will produce a database which documents the bitstream format in the database direc-
tory.

As running all these fuzzers can take significant time, Tim ‘mithro’ Ansell me@mith.ro has graciously agreed to
maintain a copy of the database in the prjxray-db repository.

8 Chapter 2. Getting Started

https://en.wikipedia.org/wiki/Fuzzing
https://github.com/SymbiFlow/prjxray/blob/master/utils
https://github.com/SymbiFlow/prjxray/blob/master/database
https://github.com/mithro
mailto:me@mith.ro
https://github.com/SymbiFlow/prjxray-db

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Please direct enquires to Tim if there are any issues with it.

2.6 Current Focus

Current the focus has been on the Artix-7 50T part. This structure is common between all footprints of the 15T, 35T
and 50T varieties.

We have also started experimenting with the Kintex-7 parts.

The aim is to eventually document all parts in the Xilinx 7-series FPGAs but we can not do this alone, we need your
help!

2.6.1 TODO List

• [] Write a TODO list

2.7 Contributing

There are a couple of guidelines when contributing to Project X-Ray which are listed here.

2.7.1 Sending

All contributions should be sent as GitHub Pull requests.

2.7.2 License

All software (code, associated documentation, support files, etc) in the Project X-Ray repository are licensed under
the very permissive ISC Licence. A copy can be found in the LICENSE file.

All new contributions must also be released under this license.

2.7.3 Code of Conduct

By contributing you agree to the code of conduct. We follow the open source best practice of using the Contributor
Covenant for our Code of Conduct.

2.7.4 Sign your work

To improve tracking of who did what, we follow the Linux Kernel’s “sign your work” system. This is also called a
“DCO” or “Developer’s Certificate of Origin”.

All commits are required to include this sign off and we use the Probot DCO App to check pull requests for this.

The sign-off is a simple line at the end of the explanation for the patch, which certifies that you wrote it or otherwise
have the right to pass it on as a open-source patch. The rules are pretty simple: if you can certify the below:

2.6. Current Focus 9

mailto:me@mith.ro
https://help.github.com/articles/creating-a-pull-request-from-a-fork/
https://opensource.org/licenses/ISC
https://github.com/SymbiFlow/prjxray/blob/master/LICENSE
https://www.contributor-covenant.org/
https://www.contributor-covenant.org/
https://github.com/wking/signed-off-by
https://developercertificate.org/
https://github.com/probot/dco

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

then you just add a line saying

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions.)

You can add the signoff as part of your commit statement. For example:

git commit --signoff -a -m "Fixed some errors."

Hint: If you’ve forgotten to add a signoff to one or more commits, you can use the following command to add signoffs
to all commits between you and the upstream master:

git rebase --signoff upstream/master

2.7.5 Contributing to the docs

In addition to the above contribution guidelines, see the guide to updating the Project X-Ray docs.

10 Chapter 2. Getting Started

CHAPTER 3

Xilinx 7-series Architecture

3.1 Overview

Todo: add diagrams.

Xilinx 7-Series architecture utilizes a hierarchical design of chainable structures to scale across the Spartan, Artix,
Kintex, and Virtex product lines. This documentation focuses on the Artix and Kintex devices and omits some concepts
introduced in Virtex devices.

At the top-level, 7-Series devices are divided into two halves by a virtual horizontal line separating two sets of global
clock buffers (BUFGs). While global clocks can be connected such that they span both sets of BUFGs, the two halves
defined by this division are treated as separate entities as related to configuration. The halves are referred to simply as
the top and bottom halves.

Each half is next divided vertically into one or more horizontal clock rows, numbered outward from the global clock
buffer dividing line. Each horizontal clock row contains 12 clock lines that extend across the device perpendicular
to the global clock spine. Similar to the global clock spine, each horizontal clock row is divided into two halves by
two sets of horizontal clock buffers (BUFHs), one on each side of the global clock spine, yielding two clock domains.
Horizontal clocks may be used within a single clock domain, connected to span both clock domains in a horizontal
clock row, or connected to global clocks.

Clock domains have a fixed height of 50 interconnect tiles centered around the horizontal clock lines (25 above, 25
below). Various function tiles, such as CLBs, are attached to interconnect tiles.

3.2 Configuration

Within an FPGA, various memories (latches, block RAMs, distributed RAMs) contain the state of signal routing, BEL
configuration, and runtime storage. Configuration is the process of loading an initial state into all of these memories
both to define the intended logic operations as well as set initial data for runtime memories. Note that the same
mechanisms used for configuration are also capable of reading out the active state of these memories as well. This can
be used to examine the contents of a block RAM or other memory at any point in the device’s operation.

11

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

3.2.1 Addressing

As described in Overview, 7-Series FPGAs are constructed out of tiles organized into clock domains. Each tile contains
a set of BELs and the memories used to configure them. Uniquely addressing each of these memories involves first
identifying the horizontal clock row, then the tile within that row, and finally the specific bit within the tile.

Horizontal clock row addressing follows the hierarchical structure described in Overview with a single bit used to
indicate top or bottom half and a 5-bit integer to encode the row number. Within the row, tiles are connected to one
or more configuration busses depending on the type of tile and what configuration memories it contains. These busses
are identified by a 3-bit integer:

Address Name Connected tile type
000 CLB, I/O, CLB Interconnect (INT)
001 Block RAM content Block RAM (BRAM)
010 CFG_CLB ???

Within each bus, the connected tiles are organized into columns. A column roughly corresponds to a physical vertical
line of tiles perpendicular to and centered over the horizontal clock row. Each column contains varying amounts of
configuration data depending on the types of tiles attached to that column. Regardless of the amount, a column’s
configuration data is organized into a multiple of frames. Each frame consists of 101 words with 100 words for the
connected tiles and 1 word for the horizontal clock row. The 7-bit address used to identify a specific frame within the
column is called the minor address.

Putting all these pieces together, a 32-bit frame address is constructed:

Field Bits
Reserved 31:26
Bus 25:23
Top/Bottom Half 22
Row 21:17
Column 16:7
Minor 6:0

CLB, I/O, CLB

Columns on this bus are comprised of 50 directly-attached interconnect tiles with various kinds of tiles connected
behind them. Frames are striped across the interconnect tiles with each tile receiving 2 words out of the frame.
The number of frames in a column depends on the type of tiles connected behind the interconnect. For example,
interconnect tiles always have 26 frames and a CLBL tile has an additional 12 frames so a column of CLBs will have
36 frames.

Block RAM content

As the name says, this bus provides access to the block RAM contents. Block RAM configuration data is accessed via
the CLB, I/O, CLB bus. The mapping of frame words to memory locations is not currently understood.

CFG_CLB

While mentioned in a few places, this bus type has not been seen in any bitstreams for Artix7 so far.

12 Chapter 3. Xilinx 7-series Architecture

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

3.2.2 Loading sequence

Todo: Expand on these rough notes.

• Device is configured via a state machine controlled via a set of registers

• CRC of register writes is checked against expected values to verify data integrity during transmission.

• Before writing frame data:

– IDCODE for configuration’s target device is checked against actual device

– Watchdog timer is disabled

– Start-up sequence clock is selected and configured

– Start-up signal assertion timing is configured

– Interconnect is placed into Hi-Z state

• Data is then written by:

– Loading a starting address

– Selecting the write configuration command

– Writing configuration data to data input register

* Writes must be in multiples of the frame size

* Multi-frame writes trigger autoincrementing of the frame address

* Autoincrement can be disabled via bit in COR1 register.

* At the end of a row, 2 frames of zeros must be inserted before data for the next row.

• After the write has finished, the device is restarted by:

– Strobing a signal to activate IOB/CLB configuration flip-flops

– Reactivate interconnect

– Arms start-up sequence to run after desync

– Desynchronizes the device from the configuration port

• Status register provides detail of start-up phases and which signals are asserted

3.2.3 Other

• ECC of frame data is contained in word 50 alongside horizontal clock row configuration

• Loading will succeed even with incorrect ECC data

• ECC is primarily used for runtime bit-flip detection

3.3 Bitstream format

FPGAs are configured with a binary file called the bitstream. The bitstream carries the information on which logical
elements on the fabric should be configured and how in order to implement the target design. Moreover, it contains
vital information on how to perform the configuration. The format of the bitstream is architecture specific, although

3.3. Bitstream format 13

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

the formats for devices of the same vendor often share a number of features. This chapter covers some details of the
bitstream format for FPGA architectures which are currently supported in SymbiFlow’s bitstream manipulation tools.

3.3.1 Xilinx

Xilinx provides a big variety of architectures (Spartan6, Series7, UltraScale, UltraScale+) that differ in the list of
features and size. Despite these differences the bitstream format is pretty much alike and differs in some small details.

Bitstream header

The bitstream header contains various information about the origin and content of the entire bitstream, such as gener-
ation timestamp, name of target part or length of the configuration data. The header itself is ignored by the device as
only the subsequent words take part in the configuration process. The presence of the bit header provides the distinction
between .bin and .bit for HDL software like Vivado. The data in the header is stored in the Tag-Length-Value(TLV)
format.

Synchronization word

Before any configuration packet is processed by the FPGA the configuration logic needs to find the synchronization
word. The so called Sync word for Xilinx devices is 0xAA995566. It is used to allow the configuration logic to
align at a 32-bit word boundary and requires the bus width to be detected successfully for parallel configuration mode
beforehand.

Bus Width Auto Detection

A specific byte pattern is inserted at the beginning of the bitstream file to allow the hardware to determine the width
of the bus providing the configuration data. The configuration logic checks the lower eight bits of the parallel bus and
depending on the received sequence the appropriate external bus width is chosen. The pattern is inserted before the
32-bit synchronization word and is ignored by the configuration state machine.

Configuration Packets

All words that follow the synchronization word are interpreted by the configuration logic. Depending on the architec-
ture the words are interpreted as 16 or 32 bit big-endian words and form the configuration packets. There are three
types of packets identified by the header which can contain three major commands: NOP, READ, WRITE. While NOP
is used for inserting required delays in the configuration sequence the most common are read and write operations.
These supported packet types are:

• Type 0 - these packets exist only when performing zero-fill between rows

• Type 1 - used for read/writes of a number of words specified by the word count portion of the header which
differs between architectures

• Type 2 - this type of packets expands the word count field that Type 1 packets have. For Series-7 FPGAs Type 2
expands to 27 bits by omitting the register address, but has to follow a Type 1 packet which carries the address
information. Spartan6’s Type 2 packets still contain the frame address, however the configuration logic expects
the header to be followed by two 16-bit words with the MSB in the first word.

14 Chapter 3. Xilinx 7-series Architecture

http://www.fpga-faq.com/FAQ_Pages/0026_Tell_me_about_bit_files.htm

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Configuration Registers

The addresses that are specified in the configuration packets are mapped to a set of registers that provide low-level
control over the chip. Only some of them take part in the programming sequence whereas the rest controls various
physical aspects of the configuration interface. Some of the key registers used during programming are:

• IDCODE - Before writing to the configuration memory, a 32-bit device ID code must be written to this register.
Reads from the register return the attached device’s ID code.

• CRC - When a packet is received by the device, it automatically updates an internal CRC calculation to include
the contents of that packet. A write to the CRC register checks that the calculated CRC matches the expected
value written to the register. This CRC check is only used to provide integrity checking of the packet stream,
not the configuration memory contents, and are not required for programming. If you are modifying a bitstream,
CRC writes can simply be removed instead of recalculating them.

• Command - Most of the programming sequence is implemented as a state machine that is controlled via one-
shot actions. Writes to this register arm an action that, depending on the action requested, may be triggered
immediately or delayed until some other condition is met. During autoincremented frame writes, the current
command is rewritten during every autoincrement. This has the effect of rearming the action on every frame
written.

• Frame Address Register (FAR) - Writes to this register set the starting address for the next frame read or write.

• FDRI - When a frame is written to FDRI, the frame data is written to the configuration memory address specified
by FAR. If the write to FDRI contains more than one frame, FAR is autoincremented at the end of each frame.

For more information on the available configuration registers refer to the configuration guides for Series-7 (table 5.23)
and Spartan6 (table 5.30).

Configuration Sequence

The basic steps for configuring a Series-7 and a Spartan6 device are the same. The first steps are responsible for the
setup and include power-up, clearing the configuration memory and sampling mode pins. Further steps are related to
loading the bitstream which is done in the following stages:

• synchronization

• check device ID

• load configuration data frames

• CRC check

• startup sequence

More details on the configuration sequence can be found in the Series-7 configuration guide (page 84)

Example programming sequence

A high-level overview of a programming sequence for a Series-7 device is presented in the table below:

3.3. Bitstream format 15

https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug380.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Com-
mand

Data Description

Write
TIMER

0x00000000Disable the watchdog timer

Write
WB-
STAR

0x00000000On the next device boot, start with the bitstream at address zero. This may be different if the
bitstream contains a multi-boot configuration.

Write
COM-
MAND

0x00000000Switch to the NULL command.

Write
COM-
MAND

0x00000007Reset the calculated CRC to zero.

Write
reg-
ister
0x13

0x00000000Undocumented register. No idea what this does yet.

Write
COR0

0x02003fe5Setup timing of various device startup operations such as which startup cycle to wait in until MM-
CMs have locked and which clock settings to use during startup.

Write
COR1

0x00000000Writing defaults to various device options such as the page size used to read from BPI and whether
continuous configuration memory CRC calculation is enabled.

Write
ID-
CODE

0x0362c093Tell the device that this is a bitstream for a XC7A50T. If the device is an XC7A50T, configuration
memory writes will be enabled.

Write
COM-
MAND

0x00000009Activate the clock configuration specified in Configuration Option Register 0. Up to this point, the
device was using whatever clock configuration the last loaded bitstream used.

Write
MASK

0x00000401Set a bit-wise mask that is applied to subsequent writes to Control 0 and Control 1. This seems
unnecessary for programming but is used to toggle certain bits in those registers instead of using
precomputed values. It might make more sense in a use case where the exact value of Control 0 or
Control 1 is unknown but a bit needs to be flipped.

Write
Con-
trol
0

0x00000501Due to the previous write to MASK, 0x401 is actually written to this register which is the default
value. Mostly disable fallback boot mode and masks out memory bits in the configuration memory
during readback.

Write
MASK

0x00000000Clear the write mask for Control 0 and Control 1

Write
Con-
trol
1

0x00000000Control 1 is officially undocumented.

Write
FAR

0x00000000Set starting address for frame writes to zero.

Write
COM-
MAND

0x00000001Arm a frame write. The write will occur on the next write to FDRI.

Write
FDRI

<547420
words>

Write desired configuration to configuration memory. Since more than 101 words are written, FAR
autoincrementing is being used. 547420 words is 5420 frames. Between each frame, COMMAND
will be rewritten with 0x1 which re-arms the next write. Note that the configuration memory space
is fragmented and autoincrement moves to the next valid address.

Write
COM-
MAND

0x0000000AUpdate the routing and configuration flip-flops with the new values in the configuration memory.
At this point, the device configuration has been updated but the device is still in programming
mode.

Write
COM-
MAND

0x00000003Tell the device that the last configuration frame has been received. The device re-enabled its inter-
connect.

Write
COM-
MAND

0x00000005Arm the device startup sequence. Documentation claims both a valid CRC check and a DESYNC
command are required to trigger the startup. In practice, a bitstream with no CRC checks works
just fine.

Write
COM-
MAND

0x0000000DExit programming mode. After this, the device will ignore data on the configuration interfaces
until the sync word is seen again. This also triggers the previously armed device startup sequence.

16 Chapter 3. Xilinx 7-series Architecture

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Differences in the programming sequence between Xilinx architectures

As stated at the beginning of this chapter the bitstream formats for various Xilinx devices have a lot in common.
However, there are some small differences which include:

• Device ID - the ID is not only architecture, but actually part specific.

• Configuration Frame Length - number of words in a configuration frame for Series7 is 101, UltraScale - 123,
UltraScale+ - 93 and 65 for Spartan6.

• Configuration Registers - The registers and the corresponding addresses are shared among Series7, UltraScale
and UltraScale+ architectures, Spartan6 however has a different set of these registers which has to be taken into
account during the configuration sequence.

Other features

• CRC

– Calculated automatically from writes: register address and data written

– Expected value is written to CRC register

– If there is a mismatch, error is flagged in status register

– Writes to CRC register can be safely removed from a bitstream

– Alternatively, replace with write to command register to reset calculated CRC value

3.4 Interconnect PIPs

3.4.1 Fake PIPs

Some PIPs are not “real”, in the sense that no bit pattern in the bit-stream correspond to the PIP being used. This is the
case for all the PIPs in the switchbox in a CLB tile (ex: CLBLM_L_INTER): They either correspond to buffers that
are always on (i.e. 1:1 connections such as CLBLL_L.CLBLL_L_AQ->CLBLL_LOGIC_OUTS0), or they correspond
to permutations of LUT input signals, which is handled by changing the LUT init value accordingly, or they are used
to “connect” two signals that are driven by the same signal from within the CLB.

Warning: FIXME: Check the above is true.

The bit switchbox in an INTs tile also contains a few 1:1 connections that are in fact always present and have no
corresponding configuration bits.

3.4.2 Regular PIPs

Regular PIPs correspond to a bit pattern that is present in the bit stream when the PIP is used in the current design.
There is a block of up to 10-ish bits for each destination signal. For each configuration (i.e. source net that can drive
the destination) there is a pair of bits that is set.

Warning: FIXME: Check if the above is true for PIPs outside of the INT switch box.

3.4. Interconnect PIPs 17

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

For example, when the bits 05_57 and 11_56 are set then SR1END3->SE2BEG3 is enabled, but when 08_56 and
11_56 are set then ER1END3->SE2BEG3 is enabled (in an INT_L tile paired with a CLBLL_L tile). A configuration
in which all three bits are set is invalid. See segbits_int_[lr].db for a complete list of bit pattern for configuring PIPs.

3.4.3 VCC Drivers

The default state for a net is to be driven high. The PIPs that drive a net from VCC_WIRE correspond to the “empty
configuration” with no bits set.

3.4.4 Bidirectional PIPs

Bidirectional PIPs are used to stitch together long traces (LV*, LVB*). In case of bidirectional PIPs there are two
different configuration patterns, one for each direction.

3.5 Distributed RAMs (DRAM / SLICEM)

The SLICEM site can turn the 4 LUT6s into distributed RAMs. There are a number of modes, each element is either
a 64x1 or a 32x2 distributed RAM (DRAM). The individual elements can be combined into either a 128x1 or 256x1
DRAM.

3.5.1 Functions

Modes

Some modes can be enabled at the single LUT level. The following modes are:

• 32x2 Single port (32x2S)

• 32x2 Dual port (32x2D)

• 64x1 Single port (64x1S)

• 64x1 Dual port (64x1D)

Some modes are SLICEM wide:

• 128x1 Single port (128x1S)

• 128x1 Dual port (128x1D)

• 256x1

Ports

Each LUT element when operating in RAM mode is a DPRAM64.

18 Chapter 3. Xilinx 7-series Architecture

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Port name Direction Width Description
WA IN 8 Write address
A IN 6 Read address
DI IN 2 Data input
WE IN 1 Write enable
CLK IN 1 Clock
O6 OUT 1 Data output 1
O5 OUT 1 Data output 2

3.5.2 Configuration

The configuration for the DRAM is found in the following segbits:

• ALUT.RAM

• ALUT.SMALL

• ADI1MUX.AI

• BLUT.RAM

• BLUT.SMALL

• BDI1MUX.BI

• CLUT.RAM

• CLUT.SMALL

• CDI1MUX.CI

• DLUT.RAM

• DLUT.SMALL

• WA7USED

• WA8USED

In order to use DRAM in a SLICEM, the DLUT in the SLICEM must be a RAM (e.g. DLUT.RAM). In addition the
DLUT can never be a dual port RAM because the write address lines for the DLUT are also the read address lines.

Segbits for modes

The following table shows the features required for each mode type for each LUT.

LUTs 32x2S 32x2D 64x1S 64x1D
D DLUT.RAM

DLUT.SMALL
N/A DLUT.RAM N/A

C CLUT.RAM
CLUT.SMALL
CDI1MUX.CI

CLUT.RAM
CLUT.SMALL

CLUT.RAM
CDI1MUX.CI

CLUT.RAM

B BLUT.RAM
BLUT.SMALL
BDI1MUX.CI

BLUT.RAM
BLUT.SMALL

BLUT.RAM
BDI1MUX.CI

BLUT.RAM

A ALUT.RAM
ALUT.SMALL
ADI1MUX.CI

ALUT.RAM
ALUT.SMALL

ALUT.RAM
ADI1MUX.CI

ALUT.RAM

3.5. Distributed RAMs (DRAM / SLICEM) 19

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Ports for modes

In each mode, how the ports are used vary. The following table show the relationship between the LUT mode and
ports.

LUTs 32x2S 32x2D 64x1S 64x1D
D WA[4:0] = A[4:0] =

{D5,D4,D3,D2,D1}
DI[1:0] = {DX, DI}

N/A WA[5:0] =
A[5:0] =
{D6,D5,D4,D3,D2,D1}
DI[0] = DI

N/A

C WA[4:0] = A[4:0] =
{C5,C4,C3,C2,C1}
DI[1:0] = {CX, CI}

WA[4:0] =
{D5,D4,D3,D2,D1}
A[4:0] = {C5,C4,C3,C2,C1}
DI[1:0] = {CX,DI}

WA[5:0] =
A[5:0] =
{C6,C5,C4,C3,C2,C1}
DI[0] = CI

WA[5:0] =
{D6,D5,D4,D3,D2,D1}
A[5:0] =
{C6,C5,C4,C3,C2,C1}
DI[0] = DI

B WA[4:0] = A[4:0] =
{B5,B4,B3,B2,B1}
DI[1:0] = {BX, BI}

WA[4:0] =
{D5,D4,D3,D2,D1}
A[4:0] = {B5,B4,B3,B2,B1}
DI[1:0] = {BX,DI}

WA[5:0] =
A[5:0] =
{B6,B5,B4,B3,B2,B1}
DI[0] = BI

WA[5:0] =
{D6,D5,D4,D3,D2,D1}
A[5:0] =
{B6,B5,B4,B3,B2,B1}
DI[0] = DI

A WA[4:0] = A[4:0] =
{A5,A4,A3,A2,A1}
DI[1:0] = {AX, AI}

WA[4:0] =
{D5,D4,D3,D2,D1}
A[4:0] = {A5,A4,A3,A2,A1}
DI[1:0] = {AX,BLUT.DI[0]}

WA[5:0] =
A[5:0] =
{A6,A5,A4,A3,A2,A1}
DI[0] = AI

WA[5:0] =
{D6,D5,D4,D3,D2,D1}
A[5:0] =
{A6,A5,A4,A3,A2,A1}
DI[0] = BLUT.DI[0]

Techlib macros

The tech library exposes the following aggregate modes, which are accomplished with the following combinations.

Macro Option 1 Option 2 Option 3 Option 4
RAM32M DLUT = 32x2S

CLUT = 32x2D
BLUT = 32x2D
ALUT = 32x2D

RAM32X1DDLUT = 32x2S
CLUT = 32x2D

BLUT = 32x2S
ALUT = 32x2D

RAM32X1SDLUT = 32x1S CLUT = 32x1S BLUT =
32x1S

ALUT =
32x1S

RAM32X2SDLUT = 32x2S
CLUT = 32x2D

BLUT = 32x2S
ALUT = 32x2D

RAM64M DLUT = 64x1S
CLUT = 64x1D
BLUT = 64x1D
ALUT = 64x1D

RAM64X1DDLUT = 64x1S
CLUT = 64x1D

BLUT = 64x1S
ALUT = 64x1D

RAM64X1SDLUT = 64x1S CLUT = 64x1S BLUT =
64x1S

ALUT =
64x1S

20 Chapter 3. Xilinx 7-series Architecture

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

3.6 Glossary

ASIC An application-specific integrated circuit (ASIC) is a chip that is designed and used for a specific purpose,
such as video acceleration, machine learning acceleration, and many more purposes. In contrast to FPGAs, the
programming of an ASIC is fixed at the time of manufacture.

basic element

BEL

basic logic element

BLE Basic elements (BELs) or basic logic element (BLEs) are the basic logic units in an FPGA, including carry
or fast adders (CFAs), flip flops (FFs), lookup tables (LUTs), multiplexers (MUXes), and other element types.
Note: Programmable interconnects (PIPs) are not counted as BELs.

BELs come in two forms:

• Basic BEL - A logic unit which does things.

• Routing BEL - A unit which is statically configured at routing time.

Bitstream Binary data that is directly loaded into an FPGA to perform configuration. Contains configuration frames
as well as programming sequences and other commands required to load and activate same.

Block RAM Block RAM is inbuilt, configurable memory on an FPGA, able to store more data than the flip flops. The
block RAM can function as dual or single-port memory. Xilinx 7 series devices offer a number of 36 Kb block
RAMs, each with two independently controlled 18 Kb RAMs. The number of block RAMs available depends
on the specific device.

CFA A carry or fast adder (CFA) is a logic element on the FPGA that performs fast arithmetic operations.

Clock A clock is a square-wave timing signal (50% on, 50% off) generated by an external oscillator and passed into
the FPGA. The clock frequency drives the sequential logic elements in the FPGA, most importantly the flip
flops. For example, the FPGA may use a 50 megahertz clock. An FGPA can use one or more clocks and can
thus have one or more clock domains.

Clock backbone

Clock spine In Xilinx 7 series devices, the clock backbone or clock spine divides the clock regions on the device into
two sides, the left and the right side.

Clock domain Portion of the device controlled by one clock. A clock domain is part of a horizontal clock row to one
side of the global clock spine. The term also often refers to the tiles that are associated with these clocks.

Clock region Portion of a device including up to 12 clock domains. A clock region is situated to the left or right of
the global clock spine, and is 50 CLBs tall on Xilinx 7 series devices. The clock region includes all synchronous
elements in the 50 CLBs and one I/O bank, with a horizontal clock row at its center.

Column A term used in bitstream configuration to denote a collection of tiles, physically organized as a vertical
line, and configured by the same set of configuration frames. Logic columns span 50 tiles vertically and 2 tiles
horizontally (pairs of logic tiles and interconnect tiles).

Configurable logic block

CLB A configurable logic block (CLB) is the configurable logic unit of an FPGA. Also called a logic cell. A CLB is
a combination of basic logic elements (BELs).

Database Text files containing meaningful labels for bit positions within segments.

Fabric sub region

FSR Another name for clock region.

3.6. Glossary 21

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Flip flop

FF A flip flop (FF) is a logic element on the FPGA that stores state.

FPGA A field-programmable gate array (FPGA) is a reprogrammable integrated circuit, or chip. Reprogrammable
means you can reconfigure the integrated circuit for different types of computing. You define the configuration
via a hardware definition language (HDL). The word “field” in field-programmable gate array means the circuit
is programmable in the field, as opposed to during chip manufacture.

Frame The fundamental unit of bitstream configuration data consisting of 101 words. Each frame has a 32-bit frame
address and 101 payload words, 32 bits each. The 50th payload word is an EEC. The 7 LSB bits of the frame
address are the frame index within the configuration column (called minor frame address in the Xilinx documen-
tation). The rest of the frame address identifies the configuration column (called base frame address in Project
X-Ray nomenclature).

The bits in an individual frame are spread out over the entire column. For example, in a logic column with 50
tiles, the first tile is configured with the first two words in each frame, the next tile with the next two words, and
so on.

Frame base address The first configuration frame address for a column. A frame base address has always the 7 LSB
bits cleared.

Fuzzer Scripts and a makefile to generate one or more specimens and then convert the data from those specimens into
a database.

Half Portion of a device defined by a virtual line dividing the two sets of global clock buffers present in a device. The
two halves are referred to as the top and bottom halves.

HDL You use a hardware definition language (HDL) to describe the behavior of an electronic circuit. Popular HDLs
include Verilog (inspired by C) and VHDL (inspired by Ada).

Horizontal clock row

HROW Portion of a device including 12 horizontal clocks and the 50 interconnect and function tiles associated with
them. A half contains one or more horizontal clock rows and each half may have a different number of rows.

I/O block One of the configurable input/output blocks that connect the FPGA to external devices.

Interconnect tile

INT An interconnect tile (INT_L, INT_R) is used to connect other tiles to the fabric. It is also frequently called a
switch box.

LUT A lookup table (LUT) is a logic element on the FPGA. LUTs function as a ROM, apply combinatorial logic,
and generate the output value for a given set of inputs.

MUX A multiplexer (MUX) is a multi-input, single-output switch controled by logic.

Node A routing node on the device. A node is a collection of wires spanning one or more tiles. Nodes that are local
to a tile map 1:1 to a wire. A node that spans multiple tiles maps to multiple wires, one in each tile it spans.

PIP

Programmable interconnect point A programmable interconnect point (PIP) is a connection point between two
wires in a tile that may be enabled or disabled by the configuration.

PnR

Place and route Place and route (PnR) is the process of taking logic and placing it into hardware logic elements on
the FPGA, and then routing the signals between the placed elements.

Region of interest

ROI Region of interest (ROI) is used in Project X-Ray to denote a rectangular region on the FPGA that is the focus
of our study. The current region of interest is SLICE_X12Y100:SLICE_X27Y149 on a xc7a50tfgg484-1 chip.

22 Chapter 3. Xilinx 7-series Architecture

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Routing fabric The wires and programmable interconnects (PIPs) connecting the logic blocks in an FPGA.

Segment All configuration bits for a horizontal slice of a column. This corresponds to two ranges: a range of frames
and a range of words within frames. A segment of a logic column is 36 frames wide and 2 words high.

Site Portion of a tile where BELs can be placed. The slices in a CLB tile are sites.

Slice Portion of a tile that contains BELs. A CLBLL_L/CLBLL_R tile contains two SLICEL slices. A
CLBLM_L/CLBLM_R tile contains one SLICEL slice and one SLICEM slice. SLICEL and SLICEM are the
most common types of slice, containing the LUTs and flip flops that are the basic logic units of the FPGA.

Specimen A bitstream of a (usually auto-generated) design with additional files containing information about the
placed and routed design. These additional files are usually generated using Vivado TCL scripts querying the
Vivado design database.

Tile Fundamental unit of physical structure containing a single type of resource or function. A container for sites and
slices. The FPGA chip is a grid of tiles.

The most important tile types are left and right interconnect tiles (INT_L and INT_R) and left and right CLB
logic/memory tiles (CLBLL_L, CLBLL_R, CLBLM_L, CLBLM_R).

Wire Physical wire within a tile.

Word 32 bits stored in big-endian order. Fundamental unit of bitstream format.

3.7 References

3.7.1 Xilinx documents one should be familiar with:

UG470: 7 Series FPGAs Configuration User Guide

https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

Chapter 5: Configuration Details contains a good description of the overall bit-stream format. (See section “Bitstream
Composition” and following.)

UG912: Vivado Design Suite Properties Reference Guide

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug912-vivado-properties.pdf

Contains an excellent description of the in-memory data structures and associated properties Vivado uses to describe
the design and the chip. The TCL interface provides a convenient interface to access this information.

UG903: Vivado Design Suite User Guide: Using Constraints

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug903-vivado-using-constraints.pdf

The fuzzers generate designs (HDL + Constraints) that use many physical contraints constraints (placement and rout-
ing) to produce bit-streams with exactly the desired features. It helps to learn about the available constraints before
starting to write fuzzers.

UG901: Vivado Design Suite User Guide: Synthesis

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug901-vivado-synthesis.pdf

Chapter 2: Synthesis Attributes contains an overview of the Verilog attributes that can be used to control Vivado
Synthesis. Many of them are useful for writing fuzzer designs. There is some natural overlap with UG903.

UG909: Vivado Design Suite User Guide: Partial Reconfiguration

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug909-vivado-partial-reconfiguration.pdf

3.7. References 23

https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug912-vivado-properties.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug903-vivado-using-constraints.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug909-vivado-partial-reconfiguration.pdf

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Among other things this UG contains some valuable information on how to constrain a design in a way so that the
items inside a pblock are strictly separate from the items outside that pblock.

UG474: 7 Series FPGAs Configurable Logic Block

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

Describes the capabilities of a CLB, the most important non-interconnect resource of a Xilinx FPGA.

3.7.2 Other documentation that might be of use:

Doc of .bit container file format: http://www.pldtool.com/pdf/fmt_xilinxbit.pdf

Open-Source Bitstream Generation for FPGAs, Ritesh K Soni, Master Thesis: https://vtechworks.lib.vt.edu/bitstream/
handle/10919/51836/Soni_RK_T_2013.pdf

VTR-to-Bitstream, Eddie Hung: https://eddiehung.github.io/vtb.html

From the bitstream to the netlist, Jean-Baptiste Note and Éric Rannaud: http://www.fabienm.eu/flf/wp-content/
uploads/2014/11/Note2008.pdf

Wolfgang Spraul’s Spartan-6 (xc6slx9) project: https://github.com/Wolfgang-Spraul/fpgatools

Marek Vasut’s Typhoon Cyclone IV project: http://git.bfuser.eu/?p=marex/typhoon.git

XDL generator/imported for Vivado: https://github.com/byuccl/tincr

3.8 Contributor Covenant Code of Conduct

3.8.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

3.8.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

24 Chapter 3. Xilinx 7-series Architecture

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
https://vtechworks.lib.vt.edu/bitstream/handle/10919/51836/Soni_RK_T_2013.pdf
https://vtechworks.lib.vt.edu/bitstream/handle/10919/51836/Soni_RK_T_2013.pdf
https://eddiehung.github.io/vtb.html
http://www.fabienm.eu/flf/wp-content/uploads/2014/11/Note2008.pdf
http://www.fabienm.eu/flf/wp-content/uploads/2014/11/Note2008.pdf
https://github.com/Wolfgang-Spraul/fpgatools
http://git.bfuser.eu/?p=marex/typhoon.git
https://github.com/byuccl/tincr

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

• Other conduct which could reasonably be considered inappropriate in a professional setting

3.8.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

3.8.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

3.8.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at atom@github.com. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard
to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

3.8.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-
covenant.org/version/1/4

3.9 Guide to updating the Project X-Ray docs

We welcome updates to the Project X-Ray docs. The docs are published on Read the Docs and the source is on the
docs branch on GitHub.

The reason for using the docs branch is to avoid running the full CI test suite which triggers when merging anything
to master. Ultimately of course the docs branch needs to be synchronized with master, but this can be done in
bulk.

Updating the docs is a three-step process: Make your updates, test your updates, send a pull request.

3.9.1 1. Make your updates

The standard Project X-Ray contribution guidelines apply to doc updates too.

Follow your usual process for updating content on GitHub. See GitHub’s guide to working with forks.

3.9. Guide to updating the Project X-Ray docs 25

mailto:atom@github.com
http://contributor-covenant.org
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/
http://prjxray.readthedocs.io
https://github.com/SymbiFlow/prjxray/tree/docs/docs
https://help.github.com/articles/working-with-forks/

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

3.9.2 2. Test your updates

Before sending a pull request with your doc updates, you need to check the effects of your changes on the page you’ve
updated and on the docs as a whole.

Check your markup

There are a few places on the web where you can view ReStructured Text rendered as HTML. For example: https:
//livesphinx.herokuapp.com/

Perform basic tests: make html and linkcheck

If your changes are quite simple, you can perform a few basic checks before sending a pull request. At minimum:

• Check that make html generates output without errors

• Check that make linkcheck reports no warnings.

• When editing, make livehtml is helpful.

To make these checks work, you need to install Sphinx. We recommend pipenv.

Follow the steps below to install pipenv via pip, run pipenv install in the docs directory, then run pipenv
shell to enter an environment where Sphinx and all the necessary plugins are installed:

Steps in detail, on Linux:

1. Install pip:

sudo apt install python-pip

2. Install pipenv - see the pipenv installation guide:

pip install pipenv

3. Add pipenv to your path, as recommended in the pipenv installation guide. On Linux, add this in your ~/.
profile file:

export PATH=$PATH:~/.local/bin source ~/.profile

Note: On OS X the path is different: ~/Library/Python/2.7/bin

4. Go to the docs directory in the Project X-Ray repo:

cd ~/github-repos/prjxray/docs

5. Run pipenv to install the Sphinx environment:

pipenv install

6. Activate the shell:

pipenv shell

7. Run the HTML build checker, and check for errors:

make html

8. Run the link checker, and check for warnings:

26 Chapter 3. Xilinx 7-series Architecture

https://livesphinx.herokuapp.com/
https://livesphinx.herokuapp.com/
http://pipenv.readthedocs.io/en/latest/install/#installing-pipenv
http://pipenv.readthedocs.io/en/latest/install/#installing-pipenv

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

make linkcheck

9. To leave the shell, type: exit.

Perform more comprehensive testing on your own staging doc site

If your changes are more comprehensive, you should do a full test of your fork of the docs before sending a pull
request to the Project X-Ray repo. You can test your fork by viewing the docs on your own copy of the Read the Docs
build.

Follow these steps to create your own staging doc site on Read the Docs (RtD):

1. Sign up for a RtD account here: https://readthedocs.org/

2. Go to your RtD connected services, click Connect to GitHub, and connect RtD to your GitHub account. (If
you decide not to do this, you’ll need to import your project manually in the following steps.)

3. Go to your RtD dashboard.

4. Click Import a Project.

5. Add your GitHub fork of the Project X-Ray project. Give your doc site a name that distinguishes it from the
canonical Project X-Ray docs. For example, your-username-prjxray.

6. Make your doc site protected. See the RtD guide to privacy levels. Reason for protecting your doc site: If you
leave your doc site public, it will appear in web searches. That may be confusing for readers who are looking
for the canonical Project X-Ray docs.

7. Set RtD to build from your branch, rather than from docs. This ensures that the content you see on your doc
site reflect your latest updates:

• On your RtD dashboard, open your project, then go to Admin > Advanced Settings.

• Add the name of your branch in Default branch. This is the branch that the “latest” build config points
to. If you leave this field empty, RtD uses master or trunk.

8. RtD now builds your doc site, based on the contents in your Project X-Ray fork.

9. See the RtD getting-started guide for more info.

3.9.3 3. Send a pull request

Follow your standard GitHub process to send a pull request to the Project X-Ray repo. See the GitHub guide to
creating a pull request from a fork.

3.9. Guide to updating the Project X-Ray docs 27

https://readthedocs.org/
https://readthedocs.org/accounts/social/connections/
https://readthedocs.org/dashboard/
http://docs.readthedocs.io/en/latest/privacy.html
https://readthedocs.org/dashboard/
https://docs.readthedocs.io/en/latest/getting_started.html#import-docs
https://help.github.com/articles/creating-a-pull-request-from-a-fork/

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

28 Chapter 3. Xilinx 7-series Architecture

CHAPTER 4

Database Development Process

4.1 Contributing to Project X-Ray

There are a couple of guidelines when contributing to Project X-Ray which are listed here.

4.1.1 Sending

All contributions should be sent as GitHub Pull requests.

4.1.2 License

All software (code, associated documentation, support files, etc) in the Project X-Ray repository are licensed under
the very permissive ISC Licence. A copy can be found in the LICENSE file.

All new contributions must also be released under this license.

4.1.3 Code of Conduct

By contributing you agree to the code of conduct. We follow the open source best practice of using the Contributor
Covenant for our Code of Conduct.

4.1.4 Sign your work

To improve tracking of who did what, we follow the Linux Kernel’s “sign your work” system. This is also called a
“DCO” or “Developer’s Certificate of Origin”.

All commits are required to include this sign off and we use the Probot DCO App to check pull requests for this.

The sign-off is a simple line at the end of the explanation for the patch, which certifies that you wrote it or otherwise
have the right to pass it on as a open-source patch. The rules are pretty simple: if you can certify the below:

29

https://help.github.com/articles/creating-a-pull-request-from-a-fork/
https://opensource.org/licenses/ISC
https://github.com/SymbiFlow/prjxray/blob/master/LICENSE
https://www.contributor-covenant.org/
https://www.contributor-covenant.org/
https://github.com/wking/signed-off-by
https://developercertificate.org/
https://github.com/probot/dco

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

then you just add a line saying

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions.)

You can add the signoff as part of your commit statement. For example:

git commit --signoff -a -m "Fixed some errors."

Hint: If you’ve forgotten to add a signoff to one or more commits, you can use the following command to add signoffs
to all commits between you and the upstream master:

git rebase --signoff upstream/master

4.1.5 Contributing to the docs

In addition to the above contribution guidelines, see the guide to updating the Project X-Ray docs.

This file is generated from README.md, please edit that file then run the ./.github/update-contributing.
py.

4.2 Adding New Fuzzer

This chapter describes how to create a new fuzzer using a DSP as an example target primitive. The files that are
generated with such fuzzer have been described in more detail in the Database chapter. The process of creating a new
fuzzer consists of two elements, namely base address calculation and feature fuzzing.

30 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

4.2.1 Base Address Calculation

The base address calculation is based on segmatching (statistical constraint solver) the base addresses. A similar
technique is used in most fuzzers for solving configuration bits.

Methodology

In this technique all IP blocks are changed in parallel. This means that log(N, 2) bitstreams are required instead of N
to get the same number of base addresses. However, as part of this conversion, address propagation is also generally
discouraged. So it is also recommended to toggle bits in all IP blocks in a column, not just one. In the CLB case, this
means that every single CLB tile gets one bit set to a random value. If there are 4 CLB CMT columns in the ROI,
this means we’d randomly set 4 * 50 bits in every bitstream. With 200 bits, it takes minimum floor(log(200, 2)) => 8
bitstreams (specimens) to solve all of them.

Calculating the base address

1. Find a tilegrid fuzzer to copy, e.g. “dsp”

2. Enter your copied directory

3. Edit top.py

a. Refer to the Xilinx 7 Series Library guide and/or Vivado layout to understand the primitive you need to
instantiate

b. Find a single bit parameter that can be easily toggled, such as a clock inverter or a bulk configuration bit

c. Find the correct site type in gen_sites()

d. Instantiate the correct verilog library macro in top

e. LOC it, if necessary. It’s necessary to LOC it if there is more than one

4. Run make, and look at Vivado’s output. Especially if you took shortcuts instantiating your macro (ex: not
connecting critical ports) you may need to add DRC waivers to generate.tcl

5. Inspect the build/segbits_tilegrid.tdb to observe bit addresses, for example DSP_L_X22Y0.
DWORD:0.DFRAME:1b 0040171B_000_01

1. The DFRAME etc entries are deltas to convert this feature offset to the base address for the tile

2. We will fix them in the subsequent step

6. Correct Makefile’s GENERATE_ARGS to make it the section base address instead of a specific bit in that memory
region

1. Align address to 0x80: 0x0040171B => –dframe 1B to yield a base address of 0x00401700

2. Correct word offset. This is harder since it requires some knowledge of how and where the IP block
memory is as a whole

i. If there is only one tile of this type in the DSP column: start by assuming it occupies the entire address
range. In this step add a delta to make the word offset 0 (–dword 0) and later indicate that it occupies
101 words (all of them)

ii. If there are multiple: compare the delta between adjacent tiles to get the pitch. This should give an
upper bound on the address size. Make a guess with that in mind and you may have to correct it later
when you have better information.

3. Align bits to 0: 1 => –dbit 1

4.2. Adding New Fuzzer 31

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug953-vivado-7series-libraries.pdf

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

7. Run make clean && make

8. Verify build/segbits_tilegrid.tdb now looks resolved

1. Ex: DSP_L_X22Y0.DWORD:0.DFRAME:1b 0040171B_000_01

2. In this case there were several DSP48 sites per DSP column

9. Find the number of frames for your tile

1. Run $XRAY_BLOCKWIDTH build/specimen_001/design.bit

2. Find the base address you used above i.e. we used 0x00401700, so use 0x00401700: 0x1B (0x1C
=> 28)

3. This information is in the part YAML file, but is not as easy to read

10. Return to the main tilegrid directory

11. Edit tilegrid/add_tdb.py

1. Find tdb_fns and add an entry for your tile type e.g. (dsp/build/segbits_tilegrid.tdb",
28, 10)

2. This is declared to be 28 frames wide and occupy 10 words per tile in the DSP column

12. Run make in the tilegrid directory

13. Look at build/tilegrid.json

1. Observe your base address(es) have been inserted (look for bits CLB_IO_CLK entry in the DSP_L_*
tiles)

4.2.2 Feature Fuzzing

The general idea behind fuzzers is to pick some element in the device (say a block RAM or IOB) to target and write a
design that is implemented in a specific element. Next, we need to create variations of the design (called specimens)
that vary the design parameters, for example, changing the configuration of a single pin and process them in Vivado in
order to obtain the respective bitstreams. Finally, by looking at all the resulting specimens, the information which bits
in which frame correspond to a particular choice in the design can be correlated. Looking at the implemented design
in Vivado with “Show Routing Resources” turned on is quite helpful in understanding what all choices exist.

Fuzzer structure

Typically a fuzzer directory consists of a mixture of makefiles, bash, python and tcl scripts. Many of the scripts are
shared among fuzzers and only some of them have to be modified when working on a new fuzzer.

• Makefile and a number of sub-makefiles contain various targets that have to be run in order to run the fuzzer and
commit the results to the final database. The most important ones are:

– run - run the fuzzer to generate the netlist, create bitstreams in Vivado, solve the bits and update the final
database with the newly calculated results.

– database - run the fuzzer without updating the final database

The changes usually done in the Makefile concern various script parameters, like number of specimen, regular expres-
sions for inclusion or exclusion list of features to be calculated or maximal number of iterations the fuzzer should try
to solve the bits for.

• top.py - Python script used to generate the verilog netlist which will be used by the fuzzer for all Vivado runs.

32 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

• generate.tcl - tcl script used by Vivado to read the base verilog design, if necessary tweak some properties and
write out the specimen bitstreams

• generate.py - Python script that reads the generated bitstream and takes a parameterized description of the design
(usually in the form of a csv file) in order to produce a file with information about which features are enabled
and which are disabled in a given segment.

Creating the fuzzer

1. Open the top.py script and modify the content of the top module by instantiating a DSP primitive and specifying
some parameters. Use LOC and DONT_TOUCH attributes to avoid some design optimization since the netlists
are in many cases very artificial.

2. Make sure the top.py script generates apart from the top.v netlist, a csv file with the values of parameters used
in the generated netlist.

3. Modify the generate.tcl script to read the netlist generated in step 1, apply, if necessary, some parameters from
the csv file generated in step 2 and write out the bitstream

4. Modify the generate.py script to insert the tags, which signify whether a feature is disabled or enabled in a site,
based on the csv parameters file generated in step 1

4.3 Fuzzers

Fuzzers are a set of tests which generate a design, feed it to Vivado, and look at the resulting bitstream to make some
conclusion. This is how the contents of the database are generated.

The general idea behind fuzzers is to pick some element in the device (say a block RAM or IOB) to target. If you
picked the IOB, you’d write a design that is implemented in a specific IOB. Then you’d create a program that creates
variations of the design (called specimens) that vary the design parameters, for example, changing the configuration
of a single pin.

A lot of this program is TCL that runs inside Vivado to change the design parameters, because it is a bit faster to load
in one Verilog model and use TCL to replicate it with varying inputs instead of having different models and loading
them individually.

By looking at all the resulting specimens, you can correlate which bits in which frame correspond to a particular choice
in the design.

Looking at the implemented design in Vivado with “Show Routing Resources” turned on is quite helpful in under-
standing what all choices exist.

4.3.1 Configurable Logic Blocks (CLB)

clb-ffconfig Fuzzer

Documents FF configuration.

Note Vivado GUI is misleading in some cases where it shows configuration per FF, but its actually per SLICE

Primitive pin map

Primitive bit map

4.3. Fuzzers 33

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

FFSYNC

Configures whether a storage element is synchronous or asynchronous.

Scope: entire site (not individual FFs)

LATCH

Configures latch vs FF behavior for the CLB

N*FF.ZRST

Configures stored value when reset is asserted

N*FF.ZINI

Sets GSR FF or latch value

CEUSEDMUX

Configures ability to drive clock enable (CE) or always enable clock

SRUSEDMUX

Configures ability to reset FF after GSR

TODO: how used when SR?

CLKINV

Configures whether to invert the clock going into a slice.

Scope: entire site (not individual FFs)

clb-ffsrcemux Fuzzer

CEUSEDMUX

Configures whether clock enable (CE) is used or clock always on

SRUSEDMUX

Configures whether FF can be reset or simply uses D value

XXX: How used when SR?

34 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

clb-lutinit Fuzzer

NLUT.INIT

Sites: CLBL[LM]_[LR].SLICE[LM]_X[01] (all CLB)

Sets the LUT6 INIT property

clb-n5ffmux Fuzzer

N5FFMUX

The A5FFMUX family of CLB muxes feed the D input of A5FF family of FFs

clb-ncy0 Fuzzer

CARRY4.NCY0

The ACY0 family of CLB muxes feeds the CARRY4.DI0 family

clb-ndi1mux Fuzzer

NDI1MUX

Configures the NDI1MUX mux which provides the DI1 input on CLB RAM.

Available selections varies by A/B/C/D, see db for details.

clb-nffmux Fuzzer

NFFMUX

Configures the AFFMUX family of CLB muxes which feed the D input of the AFF series of FFs.

Available selections varies by A/B/C/D, see db for details.

clb-noutmux Fuzzer

[A-D]FFMUX

Configures the AOUTMUX family of CLB muxes which feed the AMUX family of CLB outputs

Available selections varies by A/B/C/D, see db for details.

clb-precyinit Fuzzer

PRECYINIT

Configures the PRECYINIT mux which provides CARRY4’s first carry chain input

4.3. Fuzzers 35

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

clb-ram Fuzzer

NLUT.RAM

Set to make a RAM* family primitive, otherwise is a SRL or LUT function generator.

NLUT.SMALL

Seems to be set on smaller primitives.

NLUT.SRL

Whether to make a shift register LUT (SRL). Set when using SRL16E or SRLC32E

WA7USED

Set to 1 to propagate CLB’s CX input to WA7

WA8USED

Set to 1 to propagate CLB’s BX input to WA8

WEMUX.CE

4.3.2 Block RAM (BRAM)

BRAM Configuration

Solves for BRAM configuration bits (18K vs 36K, etc)

BRAM Data

Solves for BRAM data bits

See workflow comments: https://github.com/SymbiFlow/prjxray/pull/180

4.3.3 Input / Output (IOB)

IOB Fuzzer

4.3.4 Clocking (CMT, PLL, BUFG, etc)

HCLK_IOI interconnect fuzzer

This Fuzzer is a copy of the 047-hclk-ioi-pips fuzzer, but only solves IDELAYCTRL pips. It is separated from the
original hclk-ioi-pips as these pips need different segmatch arguments to avoid mergedb conflicts. Indeed segmatch
-c parameter is set to 3.

36 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

The IDEALYCTRL pips are in the following form:

HCLK_IOI3.HCLK_IOI_IDELAYCTRL_REFCLK.HCLK_IOI_LEAF_GCLK_((TOP)|(BOT))[0-9]

BUFG interconnect fuzzer

Solves pips located within the BUFG switch box.

BUFG interconnect fuzzer

Solves pips located within the BUFG switch box.

HCLK_CMT interconnect fuzzer

Solves pips located within the HCLK_CMT switch box.

HCLK_IOI interconnect fuzzer

Solves pips located within the HCLK_IOI switch box.

The segmatch -c argument is set to 2, as all the pips require at maximum 2 bits.

Fuzzer for INT PIPs driving the CLK wires

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

Fuzzer for PIPs in HCLK titles

Run this fuzzer once.

It cannot solve HCLK.HCLK_CK_INOUT_* family

Fuzzer for the PIPs of CMT_TOP_[LR]_LOWER_B tiles.

The fuzzer instantiates a MMCM in each available site with 2/3 probability of using it. Once used it is connected
randomly to various clock and logic resources.

For some nets a randomized “manual” route is chosen to cover as many routing scenarios as possible.

The information whether a MMCM is used or not is stored in a file ("design.txt") along with the randomized
route (route.txt)

After the design synthesis the generate.py sets fixed routes on some nets which is read from the route.txt
file. The rest of the design is routed in the regular way. The script also dumps all used PIPs (as reported by Vivado) to
the design_pips.txt.

The tag generation is done in the following way:

• If a MMCM site is occupied then tags for all active PIPs are emitted as 1s. No tags are emitted for inactive PIPs.

• When a MMCM site is not occupied (IN_USE=0) then tags for all PIPs for the CMT tile are emitted as 0s.

• The IN_USE tag is emitted directly.

4.3. Fuzzers 37

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

The raw solution of tag bits is postprocessed via the custom script fixup_and_group.py. The script does two
things:

• Clears all bits found for the IN_USE tag in all other tags. Those bits are common to all of them.

• Groups tags according to the group definitions read from the tag_groups.txt file. Bits that are common to
the group are set as 0 in each tag that belongs to it (tags within a group are exclusive).

Clock Management Tile (CMT) - MMCM Fuzzer

Bits that are part of the dynamic configration register interface (see APPNOTE XAPP888) are handled specially.

Clock Management Tile (CMT) - Phase Lock Loop (PLL) Fuzzer

Bits that are part of the dynamic configration register interface (see APPNOTE XAPP888) are handled specially.

Fuzzer for the PIPs of CMT_TOP_[LR]_UPPER_T tiles.

The fuzzer instantiates a PLL in each available site with 2/3 probability of using it. Once used it is connected randomly
to various clock and logic resources.

For some nets a randomized “manual” route is chosen to cover as many routing scenarios as possible.

The information whether a PLL is used or not is stored in a file ("design.txt") along with the randomized route
(route.txt)

After the design synthesis the generate.py sets fixed routes on some nets which is read from the route.txt
file. The rest of the design is routed in the regular way. The script also dumps all used PIPs (as reported by Vivado) to
the design_pips.txt.

The tag generation is done in the following way:

• If a PLL site is occupied then tags for all active PIPs are emitted as 1s. No tags are emitted for inactive PIPs.

• When a PLL site is not occupied (IN_USE=0) then tags for all PIPs for the CMT tile are emitted as 0s.

• The IN_USE tag is emitted directly.

The raw solution of tag bits is postprocessed via the custom script fixup_and_group.py. The script does two
things:

• Clears all bits found for the IN_USE tag in all other tags. Those bits are common to all of them.

• Groups tags according to the group definitions read from the tag_groups.txt file. Bits that are common to
the group are set as 0 in each tag that belongs to it (tags within a group are exclusive).

4.3.5 Programmable Interconnect Points (PIPs)

Fuzzer for bidirectional INT PIPs

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

Fuzzer for the FAN_ALT*.BYP_BOUNCE PIPs

This fuzzer solves the FAN_ALT.BYP_BOUNCE PIPs which were occasionally solved incorrectly in 050-pip-seed or
056-pip-rem.

38 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Fuzzer for INT PIPs driving the CTRL wires

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

Fuzzer for the FAN_ALT.*GFAN PIPs and BYP_ALT.*GFAN PIPs

This fuzzer solves the FAN_ALT.GFAN PIPs which had collisions with the GFAN PIPs as well as the
BYP_ALT.GFAN PIPs.

Fuzzer for INT PIPs driving the GFAN wires with GND

Run this fuzzer once.

Fuzzer for INT LOGIC_OUTS -> IMUX PIPs

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

Fuzzer for the remaining INT PIPs

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

This fuzzer occationally fails (depending on some random variables). Just restart it if you encounter this issue. The
script behind make run automatically handles errors by re-starting a run if an error occurs.

Solvability

Known issues:

• INT.CTRL0: goes into CLB’s SR. This cannot be routed through

Jenkins build 3 (78fa4bd5, success) for example solved the following types:

• INT_L.EE4BEG0.LH12

• INT_L.FAN_ALT1.GFAN1

• INT_L.FAN_ALT4.BYP_BOUNCE_N3_3

• INT_L.LH0.EE4END3

• INT_L.LH0.LV_L9

• INT_L.LH0.SS6END3

• INT_L.LVB_L12.WW4END3

• INT_L.SW6BEG0.LV_L0

Generic fuzzer for INT PIPs

Run this fuzzer a few times until it stops adding new PIPs to the database.

Sample runs:

• 78fa4bd5

4.3. Fuzzers 39

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

– jenkins 3, success

– intpips: 1 iter, N=200, -m 5 -M 15

– intpips todo final: N/A

– intpips segbits_int_l.db lines: 3374

– rempips todo initial: 279

– rempips todo final (32): 9

• 20e09ca7

– jenkins 21, rempips failure

– intpips: 6 iters, N=48, -m 15 -M 45

– intpips segbits_int_l.db lines: 3364

– rempips todo initial: 294

– rempips todo final (51): 294

• 1182359f

– jenkins 23, intpips failure

– inpips: 12 iters, N=48, -m 15 -M 45

– intpips todo final: 495

– inpips segbits_int_l.db lines: 5167

– rempips todo: N/A

const0

These show up in large numbers after a full solve. This means that it either has trouble solving these or simply cannot.
Counts from sample run

Includes:

• INT.BYP_ALT*.LOGIC_OUTS* (24)

– Ex: INT.BYP_ALT2.LOGIC_OUTS14

• INT.[NESW]*.LOGIC_OUTS* (576)

– Ex: INT.EE4BEG2.LOGIC_OUTS2

– Ex: INT.EL1BEG_N3.LOGIC_OUTS0

– Ex: INT.WR1BEG3.LOGIC_OUTS2

• INT.IMUX*.* (1151)

– Ex: INT.IMUX0.NL1END0

– Ex: INT.IMUX0.FAN_BOUNCE7

– Ex: INT.IMUX14.LOGIC_OUTS7

40 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

GFAN

Includes:

• Easily solves: INT.IMUX_L*.GFAN*

• Can solve: INT.BYP_ALT*.GFAN*

• Cannot solve: INT.IMUX*.GFAN* (solves as “<m1 0> ”)

IMUX

• Okay: BYP_ALT*.VCC_WIRE

• Cannot solve: INT.IMUX[0-9]+.VCC_WIRE

• Cannot solve: INT.IMUX_L[0-9]+.VCC_WIRE

See https://github.com/SymbiFlow/prjxray/issues/383

4.3.6 Hard Block Fuzzers

XADC Fuzzer

As of this writing, this fuzzer is not in the ROI To use it, you must run tilegrid first with these options (artix7):

export XRAY_ROI_GRID_Y2=103 export XRAY_ROI=”SLICE_X0Y100:SLICE_X35Y149
RAMB18_X0Y40:RAMB18_X0Y59 RAMB36_X0Y20:RAMB36_X0Y29 DSP48_X0Y40:DSP48_X0Y59
IOB_X0Y100:IOB_X0Y149 XADC_X0Y0:XADC_X0Y0” 005-tilegrid$ make monitor/build/segbits_tilegrid.tdb
005-tilegrid$ make

Then run this fuzzer

4.3.7 Grid and Wire

Tilegrid Fuzzer

This fuzzer creates the tilegrid.json bitstream database. This database contains segment definitions including base
frame address and frame offsets.

Example workflow for CLB

generate.tcl LOCs one LUT per segment column towards generating frame base addresses.

A reference bitstream is generated and then:

• a series of bitstreams are generated each with one LUT bit toggled; then

• these are compared to find a toggled bit in the CLB segment column; then

• the resulting address is truncated to get the base frame address.

Finally, generate.py calculates the segment word offsets based on known segment column structure

4.3. Fuzzers 41

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Environment variables

XRAY_ROI

This environment variable must be set with a valid ROI. See database for example values

XRAY_EXCLUDE_ROI_TILEGRID

This environment variable must be set in case the part selected does not allow some tiles to be locked.

Error example (when using the artix 200T part): ERROR: [Place 30-25] Component
carry4_SLICE_X82Y249 has been locked to a prohibited site SLICE_X82Y249.

To avoid this error, the XRAY_EXCLUDE_ROI_TILEGRID defines an ROI that is not taken into account when build-
ing the tilegrid, therefore excluding the problematic un-lockable sites.

As the resulting output file, tilegrid.json, is going to be checked against the one produced in the
074-dump_all fuzzer, also the latter one needs to produce a reduced tilegrid, with the excluded tiles specified
with the environment variable.

XRAY_ROI_FRAMES

This can be set to a specific value to speed up processing and reduce disk space If you don’t know where your ROI is,
just set to to include all values (0x00000000:0xfffffff)

XRAY_ROI_GRID_*

Optionally, use these as a small performance optimization:

• XRAY_ROI_GRID_X1

• XRAY_ROI_GRID_X2

• XRAY_ROI_GRID_Y1

• XRAY_ROI_GRID_Y2

These should, if unused, be set to -1, with this caveat:

WARNING: CLB test generates this based on CLBs but implicitly includes INT

Therefore, if you don’t set an explicit XRAY_ROI_GRID_* it may fail if you don’t have a CLB*_L at left and a
CLB*_R at right.

4.3.8 All Fuzzers

cfg fuzzer

This fuzzer solves some of the bits in the CFG_CENTER_MID tile The tile contains sites of the following
types: BSCAN, USR_ACCESS, CAPTURE, STARTUP, FRAME_ECC, DCIRESET and ICAP. DCIRESET and
USR_ACCESS don’t really have any parameters. The parameters on CAPTURE and FRAME_ECC don’t toggle
any bits in the bitstream.

42 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

PS7 verilog cell definition extractor

Extracts all pins of the PS7 bel from Vivado, groups them into ports, writes them to a JSON file.

4.4 Minitests

Minitests are experiments to figure out how things work. They allow us to understand how to better write new fuzzers.

4.4.1 CLB_BUSED Minitest

Purpose

Tests for BUSED bit

Result

However got this

seg SEG_CLBLL_R_X13Y101
bit 30_24

seg SEG_CLBLL_R_X13Y100
bit 30_24

which seems to indicate there is no such bit, or it was rolled into PIP stuff already

4.4.2 CLB_MUXF8 Minitest

Purpose

This tests an issue related to Vivado 2017.2 vs 2017.3 changing MUXF8 behavior The general issue is the LUT6_2
cannot be used with a MUXF8 (even if O5 is unused)

General notes:

• 2017.2: LUT6_2 works with MUXF8

• 2017.3: LUT6_2 does not work with MUXF8

• All: LUT6 works with MUXF8

• All: MUXF8 (even with MUXF7) can be instantiated unconnected

• 2017.4 seems to behave like 2017.3

4.4. Minitests 43

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

4.4.3 FIXEDPNR Minitest

Purpose

Result

Preliminary result

4.4.4 Minitests for IDELAY

1. basys3_idelay_var

A design for Basys3 board.

Description

This test generates a 50MHz square wave on an output pin which is then fed back to the FPGA IDELAY bel through
another input pin. The delayed signal is then routed to yet another output pin which allows it to be compared with the
input signal using an oscilloscope. The IDELAY is calibrated using 100MHz clock hence delays from 0 to 5ns can be
achieved.

The switch SW0 acts as reset. The switch SW1 allows to change the delay value. One toggle of that switch increases
the delay counter by one.

The LED0 blinks continuously. The LED1 indicates that the calibration of IDELAY has been completed (the RDY
signal from IDELAYCTRL bel). Leds LED11 through LED15 indicate current delay setting (the CNTVALUEOUT of
IDELAY bel).

Physical loopback

Consider the JXADC connector on the Basys3 board as seen when looking at the board edge:

-- -- -- -- -- --
| 6| 5| 4| 3| 2| 1|
-- -- -- -- -- --

|12|11|10| 9| 8| 7|
-- -- -- -- -- --

• Pin1 - Signal output. Connect to CH1 of the oscilloscope.

• Pin2 - Delayed signal output. Connect to CH2 of the oscilloscope.

• Pin7 - Delay signal input, connect to Pin8.

• Pin8 - Signal output. Connect to Pin7.

The oscilloscope must have bandwidth of at least 100MHz.

2. basys3_idelay_const

This design generates 32 independently shifted 50MHz square waves using constant delay IDELAY blocks. Delays
between individual signals can be measured using an oscilloscope. Due to the fact that each delay step is about
100-150ps and the FPGA fabric + IOBs also introduce their own delays, actual delay values may be hard to measure.

44 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

3. basys3_idelay_histogram

This design transmitts a pseudo-random data stream throught one output pin and then receives it through another one
with the use of IDELAY. A physical loopback is required. The received data is compared with the transmitted one.
Receive errors are counted separately for each one of 32 possible delay settings of the IDELAY bel. Values of 32 error
counters are periodically pinted using the UART as an ASCII string.

There is a control state machine which performs the following sequence once per ~0.5s (adjustable).

1. Set delay of the IDELAY bel.

2. Wait for it to stabilize (a few clock cycles)

3. Compare received and transmitted data and count errors. Do it for some period of time (adjustable).

4. Repeat steps 1-4 for all 32 delay steps

5. Output error counters through the UART

6. Wait

The physical loopback has to be connected between JXADC.7 and JXADC.8 pins.

Example UART output:

...
0027F_000277_00026D_00025C_00027C_00028B_000265_000275_000265_000271_000275_000255_
→˓00027A_000280_00027B_000265_00027B_00027A_00025D_000263_000256_00026F_000293_000268_
→˓000286_000260_000269_000275_000266_00026D_000273_000272
00281_000271_000273_00026B_000273_000271_00025F_000279_00027D_000283_000266_000279_
→˓000274_00025D_000261_000260_00026F_000287_00026E_000289_000261_000267_00027A_00026C_
→˓00026D_000270_00026C_00027C_000251_000266_00027A_000283
00271_000255_00027D_000283_000283_00025B_00027E_000271_000263_000259_000262_000270_
→˓00027E_00026F_00027D_000267_00026C_00026E_00026E_00027B_00026F_00026D_000279_000250_
→˓00026E_00027E_000282_000267_000270_000262_000237_000284
...

There are 32 hex numbers separated by “_”. Each one correspond to one error counter.

4.4.5 Minitests for ISERDES+IDELAY

1. basys3_iserdes_idelay_histogram

This design transmitts a pseudo-random data stream throught one output pin and then receives it through another
one with the use of IDELAY and ISERDES. A physical loopback is required. The received data is serialized again
(internally) and the received bitstream compared with the transmitted one. This is agnostic to ISERDES configuration.
Receive errors are counted separately for each one of 32 possible delay settings of the IDELAY bel. Values of 32 error
counters are periodically pinted using the UART as an ASCII string.

There is a control state machine which performs the following sequence once per ~0.5s (adjustable).

1. Set delay of the IDELAY bel.

2. Wait for it to stabilize (a few clock cycles)

3. Compare received and transmitted data and count errors. Do it for some period of time (adjustable).

4. Repeat steps 1-4 for all 32 delay steps

5. Output error counters through the UART

6. Wait

4.4. Minitests 45

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

The physical loopback has to be connected between JXADC.7 and JXADC.8 pins.

Consider the JXADC connector on the Basys3 board as seen when looking at the board edge:

-- -- -- -- -- --
| 6| 5| 4| 3| 2| 1|
-- -- -- -- -- --

|12|11|10| 9| 8| 7|
-- -- -- -- -- --

• Pin1 - Received signal output, through IDELAY and ISERDES.O (for reference)

• Pin2 - Transmitted signal output (for reference).

• Pin3 - Serialized data clock that the ISERDES operates on (for reference)

• Pin7 - Physical loopback input, connect to Pin8

• Pin8 - Physical loopback output, connect to Pin7

Important: Make the connection between Pin7 and Pin8 no longer than ~10cm (~4inch). You can use cables of
different length to see how it affects the signal delay.

Example UART output:

...
0027F_000277_00026D_00025C_00027C_00028B_000265_000275_000265_000271_000275_000255_
→˓00027A_000280_00027B_000265_00027B_00027A_00025D_000263_000256_00026F_000293_000268_
→˓000286_000260_000269_000275_000266_00026D_000273_000272
00281_000271_000273_00026B_000273_000271_00025F_000279_00027D_000283_000266_000279_
→˓000274_00025D_000261_000260_00026F_000287_00026E_000289_000261_000267_00027A_00026C_
→˓00026D_000270_00026C_00027C_000251_000266_00027A_000283
00271_000255_00027D_000283_000283_00025B_00027E_000271_000263_000259_000262_000270_
→˓00027E_00026F_00027D_000267_00026C_00026E_00026E_00027B_00026F_00026D_000279_000250_
→˓00026E_00027E_000282_000267_000270_000262_000237_000284
...

There are 32 hex numbers separated by “_”. Each one correspond to one error counter.

An utility script iserdes_idelay_histogram_receiver.p can be found in the utils subdirectory. It reads
and parses data received through UART and prints counter values in decimal.

4.4.6 ISERDES minitest for SDR and DDR

Description

This test allows to verify that ISEDRES is working on hardware. Tested modes are:

• NETWORKING / SDR

• NETWORKING / DDR

No chaining of two ISERDES bels.

The design serializes data using logic for all tested ISERDES modes. The data is presented onto selected pins. The
same pins are used to receive the data which is then fed to ISERDES cells. No physical loopback is required. The
clock is routed internally.

The received data is compared against transmitted internally. Errors are indicated using LEDs. The comparator module
automatically invokes the bitslip feature of ISERDES (by brutaly testing all possible combinations).

LEDs indicate whether data is being received corectly. When a LED is lit then there is correct reception:

46 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

• LED0 - SDR, WIDTH=2

• LED1 - SDR, WIDTH=3

• LED2 - SDR, WIDTH=4

• LED3 - SDR, WIDTH=5

• LED4 - SDR, WIDTH=6

• LED5 - SDR, WIDTH=7

• LED6 - SDR, WIDTH=8

• LED7 - DDR, WIDTH=4

• LED8 - DDR, WIDTH=5

• LED9 - DDR, WIDTH=6

• LED10 - Blinking

The switch SW0 is used as reset.

Building

To build the project run the following command and the bit file will be generated.

make basys3_iserdes_sdr_ddr.bit

4.4.7 LiteX minitest

This folder contains minitest for various Litex configurations and target platforms. It is divided into two directories
that differ in the CPU configuration.

• min - Minimal configuration - just a CPU + uart targeting Arty and Basys3 boards. The firmware is compiled
into the bitstream i.e. the ROM and SRAM memories are instantiated and initialized on the FPGA (no DDR
RAM controller).

• base - Linux capable SoC configuration with DDR and Ethernet targeting the Arty.

Synthesis+implementation

For each variant and platform there are two variants: for Vivado only flow and for Yosys+Vivado flow. In order to run
one of them enter the specific directory and run make. Once the bitstream is generated and loaded to the board, we
should see the test result on the terminal connected to one of the serial ports.

HDL code generation

The following instructions are for generation of the HDL code

1. Install Litex

• Create an empty directory and clone there the following repos. Be sure to checkout the specific SHA given.

• If you do not want to install LiteX and Migen in your system, setup the Python virtualenv and activate it in the
following way:

4.4. Minitests 47

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

virtualenv litex-env
source litex-env/bin/activate

• Install LiteX and Migen packages from the previously cloned repos.

Run the following command in each repo subdirectory:

./setup.py develop

• (optional) Hack LiteX HDL generation script to make it think that you have RISC-V toolchain installed (if you
don’t want to build and install it).

– Open the file litex/litex/soc/integration/cpu_interface.py in your favorite editor.

– Navigate to the line 53.

– Replace it with ("TRIPLE", "riscv32-unknown-elf")

This will allow you to generate the HDL code without bothering for compilation of the software.

2. Install RISC-V toolchain

If you don’t want to compile the software for the generated LiteX design then you may skip toolchain installation and
just hack the LiteX to think that you have it. To do so follow instuctions in the previous point.

• Clone the repo

git clone https://github.com/crosstool-ng/crosstool-ng
cd crosstool-ng
git checkout afaf7b9a

• Create a file named ct.config and put the following content into it:

CT_CONFIG_VERSION="3"
CT_EXPERIMENTAL=y
CT_LOCAL_TARBALLS_DIR="${CT_TOP_DIR}/../dl"
CT_PREFIX_DIR="${CT_TOP_DIR}/${CT_TARGET}"
CT_PREFIX_DIR_RO is not set
CT_ARCH_RISCV=y
CT_ARCH_ARCH="rv32im"
CT_ARCH_ABI="ilp32"
CT_TARGET_VENDOR=""
CT_LIBC_NONE=y
CT_CC_GCC_LDBL_128 is not set
CT_DEBUG_GDB=y
CT_GDB_CROSS_PYTHON is not set
CT_ALLOW_BUILD_AS_ROOT=y
CT_ALLOW_BUILD_AS_ROOT_SURE=y

• Build the toolchain. Issue the following commands:

export DEFCONFIG=`realpath ct.config`
./bootstrap
./configure --enable-local
make -j`nproc`
./ct-ng defconfig
./ct-ng build.`nproc`

48 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

3. Generate the HDL code

If you have built the RISC-V toolchain then make the PATH point to its binaries:

export PATH="crosstool-ng/riscv32-unknown-elf/bin:$(PATH)"

The following command will generate HDL code for the LiteX SoC with DRAM and Ethernet support for the Arty
board target:

cd litex/litex/boards/targets
./arty.py --cpu-type vexriscv --cpu-variant linux --with-ethernet --no-compile-
→˓software --no-compile-gateware

You can choose which synthesis tool generate the design for. This can be done via the additional --synth-mode
option of the arty.py script. The default is vivado but you can change it and specify yosys.

Generated code will be placed in the litex/litex/boards/targets/soc_ethernetsoc_arty folder.

4.4.8 LiteX Litex BaseSoC + LiteDRAM minitest

This folder contains a minitest for the Litex memory controller (LiteDRAM). For checking the memory interface
we leverage the fact that the BIOS firmware performs a memory test at startup. The SoC is a Basic LiteX SoC
configuration for the Arty board with the VexRiscv core.

Synthesis+implementation

There are two variants: for Vivado only flow and for Yosys+Vivado flow. In order to run one of them enter the specific
directory and run make. Once the bitstream is generated and loaded to the board, we should see the test result on the
terminal connected to one of the serial ports.

4.4.9 Minitest for OSERDES

Description

This test allows to verify that OSERDES is working on hardware. Tested modes are:

• SDR 2:1

• SDR 3:1

• SDR 4:1

• SDR 5:1

• SDR 6:1

• SDR 7:1

• SDR 8:1

• DDR 4:1

• DDR 6:1

• DDR 8:1

4.4. Minitests 49

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

No chaining of two OSERDES bels.

A pseudo random sequence of words is generated by a LFSR. The sequence is then serialized by the OSERDES and
the output bitstream goes to the output pin. The pin is using 3-state buffer which is constantly on. This allows to read
serialized data from the same pin without the need of hardware pin loopback connection.

Simultaneously to the OSERDES operation, the word sequence is serialized internally by the FPGA logic. Both
bitstreams are then compared and an error indication signal is generated. In order to mitigate for the OSERDES
latency, the reference bitstream is delayed by a number of clock cycles which is adaptively changed.

LEDs indicate whether data is being received corectly. When a LED is lit then there is correct reception:

• LED0 - SDR 2:1

• LED1 - SDR 3:1

• LED2 - SDR 4:1

• LED3 - SDR 5:1

• LED4 - SDR 6:1

• LED5 - SDR 7:1

• LED6 - SDR 8:1

• LED7 - DDR 4:1

• LED8 - DDR 6:1

• LED9 - DDR 8:1

• LED10 - Blinking continuously

The switch SW0 is used as reset.

Building

To build the project run the following command and the bit file will be generated.

make basys3_oserdes_rates.bit

4.4.10 FASM Proof of Concept using Vivado Partial Reconfig flow

harness.v is a top-level design that routes a variety of signal into a black-box region of interest (ROI). Vivado’s Partial
Reconfiguration flow (see UG909 and UG947) is used to implement that design and obtain a bitstream that configures
portions of the chip that are currently undocumented.

Designs that fit within the ROI are written in FASM and merged with the above harness into a bitstream with
fasm2frame and xc7patch. Since writting FASM is rather tedious, rules are provided to convert Verilog ROI designs
into FASM via Vivado.

Usage

make rules are provided for generating each step of the process so that intermediate forms can be analyzed. Assuming
you have a .fasm file, invoking the %_hand_crafted.bit rule will generate a merged bitstream:

make foo.hand_crafted.bit # reads foo.fasm

50 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Using Vivado to generate .fasm

Vivado’s Partial Reconfiguration flow can be used to synthesize and implement a ROI design that is then converted
to .fasm. Write a Verilog module that exactly matches the roi blackbox model in the top-level design. Note that
even the name of the module must match exactly. Assuming you have created that design in my_roi_design.v, ‘make
my_roi_design_hand_crafted.bit’ will synthesize and implement the design with Vivado, translate the resulting partial
bitstream into FASM, and then generate a full bitstream by patching the harness bitstream with the FASM. non_inv.v
is provided as an example ROI design for this flow.

4.4.11 PICORV32-v Minitest

Purpose

Unknown bits CPU synthesis test (Vivado synthesis + Vivado PnR)

Result

4.4.12 PICORV32-y Minitest

Purpose

Unknown bits CPU synthesis test (Yosys synthesis + Vivado for PnR)

Result

4.4.13 PLLE2_ADV minitest

Description

This test verifies operation of the PLLE2_ADV primitive. The PLL is configured to output clocks using the following
dividers:

• CLKOUT0: 16/16

• CLKOUT1: 16/32

• CLKOUT2: 16/48

• CLKOUT3: 16/64

• CLKOUT4: 16/80

• CLKOUT5: 16/96

The input clock can be swtched between 100MHz and 50MHz using the sw[1] switch. The 50MHz clock is generated
using simple divider implemented in logic.

Clocks from the PLL are further divided by 2^21 and then fed to LEDs 0:5. PLL lock indicator is connected to LED
15. The switch sw[0] provides reset signal to the PLL.

4.4. Minitests 51

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Building

To build the project run the following command and the bit file will be generated.

make basys3_plle2_adv.bit

4.4.14 ROI_HARNESS Minitest

Purpose

Creates an harness bitstream which maps peripherals into a region of interest which can be reconfigured.

The currently supported boards are;

• Artix 7 boards;

• Basys 3

• Arty A7-35T

• Zynq boards;

• Zybo Z7-10

The following configurations are supported;

• SWBUT - Harness which maps a board’s switches, buttons and LEDs into the region of interest (plus clock).

• PMOD - Harness which maps a board’s PMOD connectors into the region of interest (plus a clock).

• UART - Harness which maps a board’s UART

“ARTY-A7-SWBUT” # 4 switches then 4 buttons A8 C11 C10 A10 D9 C9 B9 B8 # 4 LEDs then 4 RGB LEDs (green
only) H5 J5 T9 T10 F6 J4 J2 H6

clock
E3

“ARTY-A7-PMOD” # CLK on Pmod JA G13 B11 A11 D12 D13 B18 A18 K16 # DIN on Pmod JB E15 E16 D15 C15
J17 J18 K15 J15 # DOUT on Pmod JC U12 V12 V10 V11 U14 V14 T13 U13

“ARTY-A7-UART” # RST button and UART_RX C2 A9 # LD7 and UART_TX T10 D10 # 100 MHz CLK onboard
E3

“BASYS3-SWBUT” # Slide switch pins V17 V16 W16 W17 W15 V15 W14 W13 V2 T3 T2 R3 W2 U1 T1 R2 #
LEDs pins U16 E19 U19 V19 W18 U15 U14 V14 V13 V3 W3 U3 P3 N3 P1 L1

UART
B18 # ins
A18 # outs

100 MHz CLK onboard
W5

“ZYBOZ7-SWBUT” # J15 - UART_RX - JE3 # G15 - SW0 # K18 - BTN0 # K19 - BTN1 J15 G15 K18 K19

H15 - UART_TX - JE4
E17 - ETH PHY reset (active low, keep high for 125 MHz clock)
M14 - LD0
G14 - LD2

(continues on next page)

52 Chapter 4. Database Development Process

https://github.com/SymbiFlow/prjxray-db/tree/master/artix7/harness#basys-3
https://github.com/SymbiFlow/prjxray-db/tree/master/artix7/harness#arty-a7-35t
https://github.com/SymbiFlow/prjxray-db/tree/master/zynq7/harness#zybo-z7-10

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

(continued from previous page)

M15 - LD1
D18 - LD3

125 MHz CLK onboard
K17

Quickstart

source settings/artix7.sh
cd minitests/roi_harness
source arty-swbut.sh
make clean
make copy

How it works

Basic idea:

• LOC LUTs in the ROI to terminate input and output routing

• Let Vivado LOC the rest of the logic

• Manually route signals in and out of the ROI enough to avoid routing loops into the ROI

• Let Vivado finish the rest of the routes

There is no logic outside of the ROI in order to keep IOB to ROI delays short Its expected the end user will rip out
everything inside the ROI

To target Arty A7 you should source the artix DB environment script then source arty.sh

To build the baseline harness:

./runme.sh

To build a sample Vivado design using the harness:

XRAY_ROIV=roi_inv.v XRAY_FIXED_XDC=out_xc7a35tcpg236-1_BASYS3-SWBUT_roi_basev/fixed_
→˓noclk.xdc ./runme.sh

Note: this was intended for verification only and not as an end user flow (they should use SymbiFlow)

To use the harness for the basys3 demo, do something like:

python3 demo_sw_led.py out_xc7a35tcpg236-1_BASYS3-SWBUT_roi_basev 3 2

This example connects switch 3 to LED 2

Result

4.4.15 Minitests for SRLs

This is a minitest for various SRL configurations.

Uses Yosys to generate EDIF which is then P&R’d by Vivado. The makefile also invokes bit2fasm and segprint

4.4. Minitests 53

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

4.4.16 Timing minitest

This minitest uses Vivado to compile a design and extracts the relevant timing metadata from the design, e.g. what are
the nets and how was the design routed.

For each clock path, the final timing is provided for each of the 4 corners of analysis.

From the timing metadata, create_timing_worksheet_db.py creates a worksheet breaking down the inter-
connect timing calculation and generating a final comparision between the reduced model implemented in prjxray and
the Vivado timing results.

Model quality

The prjxray timing handles most nets +/- 1.5% delay. The large exception to this is clock nets, which appear to use a
table lookup that is not understood at this time.

Running the model

The provided Makefile will by default compile all examples. It a specific design family is desired, the family name
can be provided. If a specific design within a family is desired, use <family name>_<iter>.

Example:

Build all variants of the DFF loopback test
make dff
Build only DESIGN_NAME=dff ITER=63
make dff_63

4.4.17 Zynq7 EMIO minitest

This is a simple test of PS -> PL interface for Zynq7. Works on the ZYBO Z7 board with xc7z020 but should also
work for xc7z010.

The PS firmware is bare metal. Upon start it enables MIO7 as output as well as PS <-> PL level shifters. Next it
implements a blinking led on MIO7 and counter on GPIO bank 2. The bank 2 is connected to EMIOGPIOO[31:0]
signals of the PS7 instance in the PL logic design.

The PL design “instantiates” the PS7 and connects EMIOGPIOO[3:0] to LEDs LD0-LD3 but through XOR gates
controlled by push buttons BTN0-BTN3.

4.4.18 Building & loading

PS

Run make firmware to compile the firmware. Then run make run to upload it to Zybo. You must have Xilinx
XSCT installed and pointed to in the environment. You can also just run make to execute those two above steps. Upon
loading the LED LD4 should start blinking.

PL

Run make top.bit to generate the bitstream. Upload it to the Zybo AFTER uploading and running PS firmware.
You can use eg. xc3sprog with the following command xc3sprog -c jtaghs1 -p 1 top.bit. Once done
LEDs LD0-LD3 should begin dusplaying 4 LSBs of the counter.

54 Chapter 4. Database Development Process

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

4.5 Tools

SymbiFlow/prjxray/tools/

Here, you can find various programs to work with bitstreams, mainly to assist building fuzzers.

4.5. Tools 55

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

56 Chapter 4. Database Development Process

CHAPTER 5

Database

This section documents how the bitstream database is represented in project X-Ray. The database is a collection of
plain text files, using either simple line-based syntax or JSON format.

5.1 Description

The main goal of the X-Ray Project is to provide information about Xilinx 7-Series FPGA internals. All obtained chip
data is stored in the project’s database and is used by the Architecture Definitions project to produce a bitstream for
the chosen 7-Series FPGA chip.

The database files are generated by the fuzzers and are located in the database directory. Each supported chip
architecture has its own set of files, which are located in database/<device_arch>/. The database can be quite
huge, however it consists only of a few file types. Some of them are common for the whole 7-Series architecture, but
some of them are part specific.

Files common for whole 7-Series family:

• mask_*

• ppips_*

• segbits_*

• site_type_*

• tile_type_*

• timings/*

The files specific to a given part are located in a separate directory which is named after the FPGA part name i.e
xc7a35tcpg236-1 or xc7a50tfgg484-1.

Files specific for the particular FPGA part:

• package_pins.csv

• part.json

57

https://github.com/SymbiFlow/symbiflow-arch-defs

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

• part.yaml

• tileconn.json

• tilegrid.json

5.2 Common database files

This section contains a description of database files that are common for all Xilinx series 7 chip architectures.

5.2.1 segbits files

The segbits files are generated for every FPGA tile type. They store the information about the combinations of bits in
the bitstream that are responsible for enabling different features inside the tile. The features can be related to enabling
some part of the primitive, setting some initial state of the block, configuring pin pull-up on output pins, etc.

Besides the features provided in this file that can be enabled, the FPGA chip also has the default configuration. Due to
that sometimes there is no need for affecting the default configuration.

Naming convention

The naming scheme for the segbits files is the following:

segbits_<tile>.db

Note that auxiliary segbits_<tile>.origin_info.db files provide additional information about the fuzzer,
which produced the database file. This file is optional.

Every tile is configured at least by one of three configurational buses mentioned in the Configuration Section.
The default bus is called CLB_IO_CLK. If the tile can also be configured by another bus, it has additional
segbits_<tile>.<bus_name>.db related to that bus.

Example files:

• segbits_dsp_r.db

• segbits_bram_l.db (configured with default CLB_IO_CLK bus)

• segbits_bram_l.block_ram.db (configured with BLOCK_RAM bus)

File format

The file consists of lines containing the information about the feature and the list of bits that should be enabled/disabled
to provide the feature’s functionality:

<feature> <bit_list>

where:

• <feature> is of the form <feature_name>.<feature_addr>

• <bit_list> is the list of bits. Each bit is of the form <frame_address_offset>_<bit_possition>.
If the bit has the ! mark in front of it, that means it should be set to 0 for feature configuration, otherwise it
should be set to 1.

58 Chapter 5. Database

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

The names of the features are arbitrary. However, the naming convention allows for quick identifaction of the func-
tionality that is being configured. The feature names are used during the generation of the FASM file.

Feature naming conventions

PIPs

The <feature> names for interconnect PIPs are stored in the segbits_int_l.db and segbits_int_r.db
database files. The features that enable interconnect PIPs have the following syntax:

<tile_type>.<destination_wire>.<source_wire>.

For example, consider the following entry in segbits_int_l.db:

INT_L.NL1BEG1.NN6END2 07_32 12_33

CLBs

The <feature> names for CLB tiles use a dot-separated hierarchy.

For example:

CLBLL_L.SLICEL_X0.ALUT.INIT[00]

This entry documents the initialization bits of the LSB LUT for the ALUT in the SLICEL_X0 within a CLBLL_L tile.

Example

Below there is a part of the segbits_liob33_l.db file for the artix7 architecture. The file describes the CLBLL
tile:

<...>
LIOB33.IOB_Y0.IBUFDISABLE.I 38_82
LIOB33.IOB_Y0.IN_TERM.NONE !38_120 !38_122 !39_121 !39_123
LIOB33.IOB_Y0.IN_TERM.UNTUNED_SPLIT_40 38_120 38_122 39_121 39_123
LIOB33.IOB_Y0.IN_TERM.UNTUNED_SPLIT_50 38_120 38_122 !39_121 39_123
LIOB33.IOB_Y0.IN_TERM.UNTUNED_SPLIT_60 38_120 !38_122 !39_121 39_123
LIOB33.IOB_Y0.INTERMDISABLE.I 39_89
LIOB33.IOB_Y0.LVTTL.DRIVE.I24 38_64 !38_112 !38_118 38_126 39_65 39_117 39_119 !39_
→˓125 !39_127
LIOB33.IOB_Y0.PULLTYPE.KEEPER 38_92 38_94 !39_93
LIOB33.IOB_Y0.PULLTYPE.NONE !38_92 38_94 !39_93
LIOB33.IOB_Y0.PULLTYPE.PULLDOWN !38_92 !38_94 !39_93
LIOB33.IOB_Y0.PULLTYPE.PULLUP !38_92 38_94 39_93
<...>

For example, the line:

LIOB33.IOB_Y0.PULLTYPE.PULLUP !38_92 38_94 39_93

means that the feature LIOB33.IOB_Y0.PULLTYPE.PULLUP will be set by clearing bit !38_92 and setting bits
38_94 and 39_93.

5.2. Common database files 59

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Generally, the <feature> name is linked with its functionality. For example, LIOB33.IOB_Y0.PULLTYPE.
PULLUP means that in the LIOB33 tile, in IOB_Y0 site the pull type will be set to PULLUP. This simply means that
all pins belonging to this particular IOB will be configured with pull-up.

5.2.2 site_type files

The site_type files are generated for every FPGA site type. They store the information about the pins and PIPs of the
site.

Naming convention

The naming scheme for the site type files is the following:

site_type_<site>.json

Example files:

• site_type_IDELAYE2.json

• site_type_PLLE2_ADV.json

• site_type_SLICEL.json

File format

The site type files are JSON files with the following scheme:

{
"site_pins": {

"<PIN_NAME>": {
"direction": "<DIR>"

},
<...>

},
"site_pips": {

"<PIP_NAME>": {
"from_pin": "<PIN_NAME>",
"to_pin": "<PIN_NAME>"

}
},
"type": "<TYPE>"

}

where:

• <PIN_NAME> - specifies the site pin name

• <PIP_NAME> - specifies the site pip name

• <DIR> - is a direction of a pin (either IN or OUT)

• <TYPE> - specifies the site type

The "site_pins" section describes the input pins of a site and its directions. The "site_pips" describes the
PIPs inside the site and which wires they can connect.

60 Chapter 5. Database

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Example

Below there is a part of site_type_SLICEL.json file for the artix7 architecture:

{
"site_pins": {

"A": {
"direction": "OUT"

},
"A1": {

"direction": "IN"
},
"A2": {

"direction": "IN"
},
"A3": {

"direction": "IN"
},
"A4": {

"direction": "IN"
},
"A5": {

"direction": "IN"
},
"A6": {

"direction": "IN"
},
<...>

},
"site_pips": {

"A5FFMUX:IN_A": {
"from_pin": "IN_A",
"to_pin": "OUT"

},
"A5FFMUX:IN_B": {

"from_pin": "IN_B",
"to_pin": "OUT"

},
"A5LUT:A1": {

"from_pin": "A1",
"to_pin": "O5"

},
"A5LUT:A2": {

"from_pin": "A2",
"to_pin": "O5"

},
"A5LUT:A3": {

"from_pin": "A3",
"to_pin": "O5"

},
"A5LUT:A4": {

"from_pin": "A4",
"to_pin": "O5"

},
"A5LUT:A5": {

"from_pin": "A5",
"to_pin": "O5"

},

(continues on next page)

5.2. Common database files 61

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

(continued from previous page)

<...>
},
"type": "SLICEL"

}

Compare the description with the Xilinx documentation of that site.

5.2.3 tile_type files

The tile_type files are generated for every FPGA tile type. They store the information about the tile configuration, its
PIPs, sites, wires and their properties.

Naming convention

The naming scheme for the segbits files is the following:

tile_type_<tile>.json

Example files:

• tile_type_INT_L.json

• tile_type_BRAM_L.json

• tile_type_HCLK_CLB.json

File format

The tile type files are JSON files with the following shape:

{
"pips": {

"<PIP_NAME>": {
"can_invert":' "<BOOL>",
"dst_to_src": {

"delay": [
"<FAST_MIN>",
"<FAST_MAX>",
"<SLOW_MIN>",
"<SLOW_MAX>"

],
"in_cap": "<IN_CAPACITANCE>",
"res": "<RESISTANCE>"

},
"dst_wire": "<WIRE_NAME>",
"is_directional": "<BOOL>",
"is_pass_transistor": <BOOL>,
"is_pseudo": "0",
"src_to_dst": {

"delay": [
"<FAST_MIN>",
"<FAST_MAX>",
"<SLOW_MIN>",
"<SLOW_MAX>"

(continues on next page)

62 Chapter 5. Database

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf#page=20

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

(continued from previous page)

],
"in_cap": "<IN_CAPACITANCE>",
"res": "<RESISTANCE>"

},
"src_wire": "<WIRE_NAME>"

},
},
"sites": [

{
"name": "<SITE_NAME>",
"prefix": "<SITE_PREFIX>",
"site_pins": {

"<SITE_PIN_NAME>": {
"cap": "<CAPACITY>",
"delay": [

"<FAST_MIN>",
"<FAST_MAX>",
"<SLOW_MIN>",
"<SLOW_MAX>"

],
"wire": "<WIRE_NAME>"

},
<...>

],
"tile_type": "<TILE_TYPE>",
"wires": {

"<WIRE_NAME>": {
"cap": "<WIRE_CAPACITY>",
"res": "<WIRE_RESISTANCE>"

},
<...>

},
}

“pips” section

The “pips” section describes all PIPs in the tile. Every PIP has its name - "<PIP_NAME>" and may be characterized
by the following attributes:

• can_invert - takes a value which can be either 1 or 0. It defines whether the PIP has an inverter on its output
or not.

• dst_to_src - information about the connection in the direction from destination to source. It describes the
following properties of the connection:

– delay - a four-element list, which contain information about the delay of pins. First two elements are
related to the fast corner of the technological process, the second two elements to the slow corner. The
first element of the pair is the minimum value of the corner, the second describes the maximum value.
They are given in us (nanoseconds).

– in_cap - the input capacitance of the PIP in uF (microfarads).

– res - the resistance of the PIP in mΩ (miliohms).

• dst_wire - the destination wire name

• is_directional - contains the information whether PIP is directional.

5.2. Common database files 63

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

• is_pass_transisstor - contains the information whether PIP acts as a pass transistor

• is_pseudo - contains the information whether PIP is a pseudo-PIP

• src_to_dst - contains the information about the connection in the direction from source to destination. It is
described by the same set of properties as dst_to_src section.

“sites” section:

The “sites” section describes all sites in the tile. Every site may be characterized by the following attributes:

• name - location in the tile grid

• prefix - the type of the site

• site_pins - describes the pins that belong to the site. Every pin has its name - <PIN_NAME> and may be
described by the following attributes:

– cap - pin capacitance in uF (microfarads).

– delay - a four-element list, which contain information about the delay of pins. First two elements are
related to the fast corner of the technological process, the second two elements to the slow corner. The
first element of the pair is the minimum value of the corner, the second describes the maximum value.
They are given in us (nanoseconds).

– wire - wire associated with the pin

• type - indicates the type of the site

• x_coord - describes x coordinate of the site position inside the tile

• y_coord - describes the y coordinate of the site position inside the tile

“wires” section

The “wires” section describes the wires located in the tile. Every wire has its name - <WIRE_NAME> and may be
characterized by the following attributes:

• cap - wire capacitance in uF (microfarads)

• res - wire resistance in mΩ (miliohms).

Other

• tile_type - indicates the type of the tile

Example

Below there is a part of tile_type_BRAM_L.json for the artix7 architecture:

{
"pips": {

"BRAM_L.BRAM_ADDRARDADDRL0->>BRAM_FIFO18_ADDRATIEHIGH0": {
"can_invert": "0",
"dst_to_src": {

"delay": [
"0.038",

(continues on next page)

64 Chapter 5. Database

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

(continued from previous page)

"0.046",
"0.111",
"0.134"

],
"in_cap": "0.000",
"res": "737.319"

},
"dst_wire": "BRAM_FIFO18_ADDRATIEHIGH0",
"is_directional": "1",
"is_pass_transistor": 0,
"is_pseudo": "0",
"src_to_dst": {

"delay": [
"0.038",
"0.046",
"0.111",
"0.134"

],
"in_cap": "0.000",
"res": "737.319"

},
"src_wire": "BRAM_ADDRARDADDRL0"

},
<...>
"BRAM_L.BRAM_IMUX12_1->BRAM_IMUX_ADDRARDADDRU8": {

"can_invert": "0",
"dst_to_src": {

"delay": null,
"in_cap": null,
"res": "0.000"

},
"dst_wire": "BRAM_IMUX_ADDRARDADDRU8",
"is_directional": "1",
"is_pass_transistor": 1,
"is_pseudo": "0",
"src_to_dst": {

"delay": null,
"in_cap": null,
"res": "0.000"

},
"src_wire": "BRAM_IMUX12_1"

},
<...>

},
"sites": [

{
"name": "X0Y0",
"prefix": "RAMB18",
"site_pins": {

"ADDRARDADDR0": {
"cap": "0.000",
"delay": [

"0.000",
"0.000",
"0.000",
"0.000"

],
(continues on next page)

5.2. Common database files 65

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

(continued from previous page)

"wire": "BRAM_FIFO18_ADDRARDADDR0"
},
<...>
"WRERR": {

"delay": [
"0.000",
"0.000",
"0.000",
"0.000"

],
"res": "860.0625",
"wire": "BRAM_RAMB18_WRERR"

},
<...>

},
"type": "RAMB18E1",
"x_coord": 0,
"y_coord": 1

}
],
"tile_type": "BRAM_L",
"wires": {

"BRAM_ADDRARDADDRL0": null,
"BRAM_ADDRARDADDRL1": null,
"BRAM_ADDRARDADDRL2": null,
"BRAM_ADDRARDADDRL3": null,
"BRAM_EE2A0_0": {

"cap": "60.430",
"res": "268.920"

},
<...>
"BRAM_EE2A0_1": {

"cap": "60.430",
"res": "268.920"

},
<...>

}

5.2.4 ppips files

The ppips files are generated for every FPGA tile type. They store the information about the pseudo-PIPs, inside the
tile.

Programable Interconnect Point (PIP) is a connection inside the tile that can be enabled or disabled. Pseudo PIPs
appear as standard PIPs in the Vivado tool, but they do not have actual configuration bit pattern in segbits files (they
are not configurable).

The ppips files contains the information which PIPs <PIP> do not have configuration bits, which allows the tools to
not generat error in that situation. On the other hand this information is used to indicate that the connection between
wires is always on.

Naming convention

The naming scheme for the PPIPs files is the following:

66 Chapter 5. Database

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

ppips_<tile>.db

For example:

• ppips_dsp_l.db

• ppips_clbll_l.db

• ppips_bram_int_interface_l.db

File format

The file contains one entry per pseudo-PIP, each with one of the following three tags: always, default or hint.
The entries are of the form::

<ppip_location> <tag>

The tag always is used for pseudo-PIPs that are actually always-on, i.e., that are permanent connections between
two wires.

The tag default is used for pseudo-PIPs that represent the default behavior if no other driver has been configured
for the destination net (all default pseudo-PIPs connect to the VCC_WIRE net).

The tag hint is used for PIPs that are used by Vivado to tell the router that two logic slice outputs drive the same
value, i.e., behave like they are connected as far as the routing process is concerned.

Example

Below there is a part of artix7 ppips_clbll_l.db file:

<...>
CLBLL_L.CLBLL_L_A.CLBLL_L_A6 hint
CLBLL_L.CLBLL_L_AMUX.CLBLL_L_A hint
CLBLL_L.CLBLL_L_AX.CLBLL_BYP0 always
CLBLL_L.CLBLL_L_B.CLBLL_L_B1 hint
CLBLL_L.CLBLL_L_B.CLBLL_L_B2 hint
CLBLL_L.CLBLL_L_B.CLBLL_L_B3 hint
CLBLL_L.CLBLL_L_B.CLBLL_L_B4 hint
<...>

The <ppip_location> name is arbitrary. However, the naming convention is similar to the one in the Vivado tool,
which allows for quick identification of their role in the FPGA chip.

5.2.5 mask files

The mask files are generated for every FPGA tile type. They store the information which bits in the bitstream can
configure the given tile type.

Naming convention

The naming scheme for the mask files is the following:

mask_<tile>.db

5.2. Common database files 67

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

Note that auxiliary mask_<tile>.origin_info.db files provide additional information about the fuzzer, which
produced the database file. This file is optional.

Every tile is configured at least by one of three configurational buses mentioned in the Configuration Section.
The default bus is called CLB_IO_CLK. If the tile can also be configured by another bus, it has an additional
mask_<tile>.<bus_name>.db related to that bus.

For example:

• mask_dsp_r.db

• mask_bram_l.db (configured with default CLB_IO_CLK bus)

• mask_bram_l.block_ram.db (configured with BLOCK_RAM bus)

File format

The file consists of records that describe the configuration bits for the particular tile type. Each entry inside the file is
of the form:

bit <frame_address_offset>_<bit_position>

This means that the tile can be configured by a bit located in the frame at the address <base_frame_addr>
+ <frame_address_offset>, at position <tile_offset> + <bit_position>. Information about
<base_frame_address> and <tile_offset> can be taken from part specific tilegrid.json file.

Example

Below there is a part of artix7 mask_clbll_l.db file describing a FPGA CLBLL tile:

<...>
bit 00_61
bit 00_62
bit 00_63
bit 01_00
bit 01_01
bit 01_02
<...>

The line bit 01_02 means that the CLBL_LL tile can be configured by the bit located in the frame at the address
<base_frame_address> + 0x01, at position <tile_offset> + 0x2.

The tilegrid.json is a file specific to a given chip package. For xc7a35tcpg236-1 we can find an exemplary
CLBLL_L entry:

"CLBLL_L_X2Y0": {
"bits": {

"CLB_IO_CLK": {
"baseaddr": "0x00400100",
"frames": 36,
"offset": 0,
"words": 2

}
},
"clock_region": "X0Y0",
"grid_x": 10,
"grid_y": 155,

(continues on next page)

68 Chapter 5. Database

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

(continued from previous page)

"pin_functions": {},
"sites": {

"SLICE_X0Y0": "SLICEL",
"SLICE_X1Y0": "SLICEL"

},
"type": "CLBLL_L"

},

The <base_frame_addr> can be found as a argument of the “baseaddr” key and for CLBLL_L_X2Y0 tile it is
equal to 0x00400100. The <tile_offset> on the other hand is an argument of the “offset” key. Here it is equal
to 0.

Finally, we are able to compute the bit location associated with the bit 01_02 entry.

The configuration bit for this record can be found in the following frame address:

0x00400100 + 0x01 = 0x00400101

Located at the bit position:

0x0 + 0x2 = 0x2

More about the configuration process and the meaning of the frame can be found in the Configuration Section.

5.3 Part specific database files

This section contains a description of database files that are part (chip) specific:

5.3.1 tilegrid file

The tilegrid.json is a list of all tiles in the device. This information is used at various stages of the flow i.e. for
database generation or creating a bitstream. The most important parts of the file are related to frame addressing within
the bitstream, grid and clock region location, list of underlying sites, or the type of the tile itself.

Before diving into this section, it is advised to familiarize yourself with the 7-Series Bitstream Format chapter and
Configuration chapter.

File format

The file consists of the entries describing every tile in the FPGA chip. The file is of the form:

{
"<TILE_NAME>": {

"bits": {
"<CONFIGURATION_BUS>": {

"baseaddr": "<BASE_ADDR>,
"frames": 28,
"offset": 97,
"words": 2

},
<...>

},

(continues on next page)

5.3. Part specific database files 69

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

(continued from previous page)

"clock_region": <CLOCK_REGION>,
"grid_x": <GRID_X>,
"grid_y": <GRID_Y>,
"pin_functions": {

"<PIN_NAME">: "<PIN_FUNCTION>",
<...>

},
"prohibited_sites": [

"<SITE_TYPE>",
<...>

],
"sites": {

"<SITE_NAME>": <SITE_TYPE>,
<...>

},
"type": "INT_R"

}

The <TILE_NAME> indicates the name of the tile described in the entry. The naming convention matches Vivado.

Each tile entry in the file has the following fields:

• "bits" - contains the data related to tile configuration over the <CONFIGURATION_BUS>. There are
three types of the configuration buses in 7-Series FPGAs: CLB_IO_CLK, BLOCK_RAM and CFG_CLB. Ev-
ery <CONFIGURATION_BUS> has the following fields:

– baseaddr - Basic address of the configuration frame. Every configuration frame consist of 101 of 32bit
words. Note that a single frame usually configures a bunch of tiles connected to the single configuration
bus.

– "frames" - Number of frames that can configure the tile.

– offset - How many words of offset is present in the frame before the first word that configures the tile.

– words - How many 32bit words configure the tile.

• clock_region - indicates to which clock region the tile belongs to.

• grid_x - tile column, increasing right

• grid_y - tile row, increasing down

• pin_functions - indicates the special functions of the tile pins. Usually it is related to IOB blocks and
indicates i.e. differential output pins.

• prohibited_sites - Indicates which site types cannot be used in the tile

• sites - dictionary which contains information about the sites which can be found inside the tile. Every entry
in the dictionary contains the following information:

– "<SITE_NAME>" - The unique name of the site inside the tile.

– "<SITE_TYPE> - The type of the site

• type - The type of the tile

Examples

70 Chapter 5. Database

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

"CLBLL_L_X16Y149": {
"bits": {

"CLB_IO_CLK": {
"baseaddr": "0x00020800",
"frames": 36,
"offset": 99,
"words": 2

}
},
"clock_region": "X0Y2",
"grid_x": 43,
"grid_y": 1,
"pin_functions": {},
"sites": {

"SLICE_X24Y149": "SLICEL",
"SLICE_X25Y149": "SLICEL"

},
"type": "CLBLL_L"

}

Interpreted as:

• Tile is named CLBLL_L_X16Y149

• Frame base address is 0x00020800

• For each frame, skip the first 99 words loaded into FDRI

• Since it’s 2 FDRI words out of possible 101, it’s the last 2 words

• It spans across 36 different frame loads

• Located in clock region X0Y2

• Located at row 1, column 43

• Contains two sites, both of which are SLICEL

• Is a CLBLL_L type tile

More information about frames and the FPGA configuration can be found in the Configuration chapter. Example of
absolute frame address calculation can be found in the mask file chapter.

5.3.2 tileconn file

The tileconn.json file contains the information on how the wires of neighboring tiles are connected. It contains
one entry for each pair of tile types, each containing a list of pairs of wires that belong to the same node.

Warning: FIXME: This is a good place to add the tile wire, pip, site pin diagram.

This file documents how adjacent tile pairs are connected. No directionality is given.

File format

The file contains one large list:

5.3. Part specific database files 71

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

[
{

"grid_deltas": [
<DELTA_X>,
<DELTA_Y>

],
"tile_types": [

"<SOURCE_TILE>",
"<DESTINATION_TILE>"

],
"wire_pairs": [

[
"<SOURCE_TILE_WIRE>",
"<DESTINATION_FILE_WIRE>"

],
<...>

],
},
<...>

]

Each entry has the following fields:

• grid_deltas - indicates the position (<DELTA_X>, <DELTA_Y>) of the source tile relative to the destina-
tion_file

• tile_types - contains the information about both <SOURCE_TILE_TYPE> and
<DESTINATION_TILE_TYPE>

• wire_pairs - contains the names of both <SOURCE_TILE_WIRE> and <DESTINATION_TILE_WIRE>

Example

{
"grid_deltas": [

0,
1

],
"tile_types": [

"CLBLL_L",
"HCLK_CLB"

],
"wire_pairs": [

[
"CLBLL_LL_CIN",
"HCLK_CLB_COUT0_L"

],
[

"CLBLL_L_CIN",
"HCLK_CLB_COUT1_L"

]
]

}

Interpreted as:

• Use when a CLBLL_L is above a HCLK_CLB (i.e. pointing south from CLBLL_L)

72 Chapter 5. Database

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

• Connect CLBLL_L.CLBLL_LL_CIN to HCLK_CLB.HCLK_CLB_COUT0_L

• Connect CLBLL_L.CLBLL_L_CIN to HCLK_CLB.HCLK_CLB_COUT1_L

• A global clock tile is feeding into slice carry chain inputs

5.3.3 part files

Both the part.json and part.yaml files contain information about the configuration resources of the FPGA chip.
The files include information about bus types and the number of frames that are available for the given configurational
column.

Additionally, the file stores information about the device ID and available IO BANKS.

File format

Both files contain the same information, but since the part.yaml is less accessible, the description will be based on
the part.json file.

The part.json file is of the following form:

{
"global_clock_regions": {

"bottom": {
"rows": {

"<ROW_NUMBER>" : {
"configuration_buses": {

"<CONFIGURATION_BUS>": {
"configurational_columns": {

"<COLUMN_NUMBER>": {
"frame_count": <FRAME_COUNT>

}
<...>

}
}
<...>

}
}
<...>

}
},
"top": {

"rows": {
"<ROW_NUMBER>" : {

"configuration_buses": {
"<CONFIGURATION_BUS>": {

"configurational_columns": {
"<COLUMN_NUMBER>": {

"frame_count": <FRAME_COUNT>
}
<...>

}
}
<...>

}
}
<...>

(continues on next page)

5.3. Part specific database files 73

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

(continued from previous page)

}
},
}

},
"idcode" : <IDCODE>,
"iobanks" : {

"<BANK_ID>": <BANK_POSITION>",
<...>

}
}

The file contains three main entries:

• "global_clock_regions" - Contains the information about the configurational resources of the FPGA
chip. The 7-Series FPGAs are divided into two halves - top and bottom. This explains the origin of those
entries in the file.

Every half contains a few rows associated with the global clock regions. The particular row of the global
clock regions is indicated by the <ROW_NUMBER>. Since every row can be configured by one of three
configurational buses: CLK_IO_CLKB, BLOCK_RAM or CFG_CLB, the appropriate bus is indicated by the
<CONFIGURATION_BUS>.

There are many columns connected to a single bus. Each column is described by appropriate
<COLUMN_NUMBER> entry which contains the information about the number of frames (<FRAME_COUNT>)
which can be used to configure the particular column.

• "idcode" - ID of the given chip package

• "iobanks" - a dictionary that contains the IO Bank ID (<BANK_ID>) and their position in the FPGA grid
(<BANK_POSITION>).

Examples

{
global_clock_regions": {

"bottom": {
"rows": {

"0": {
"configuration_buses": {

"BLOCK_RAM": {
"configuration_columns": {

"0": {
"frame_count": 128

},
"1": {

"frame_count": 128
},
"2": {

"frame_count": 128
}

}
},
"CLB_IO_CLK": {

"configuration_columns": {
"0": {

"frame_count": 42

(continues on next page)

74 Chapter 5. Database

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

(continued from previous page)

},
"1": {

"frame_count": 30
},
"2": {

"frame_count": 36
},
<...>

}
}

<...>
},

},
"top" : {

<...>
}

},
"idcode": 56803475,
"iobanks": {

"0": "X1Y78",
"14": "X1Y26",
"15": "X1Y78",
"16": "X1Y130",
"34": "X113Y26",
"35": "X113Y78"

}
}

5.3.4 package_pins file

The package_pins.csv is a simple file that describes the pins of the particular FPGA chip package.

File format

Every row in the file represents a single pin. Each of the pins is characterized by:

• pin - The package pin name

• bank - The ID of IO BANK to which the pin is connected. It should match with the data from the part file

• site - The site to which the pin belongs

• tile - The tile to which the pin belongs

• pin_function - The function of the pin

Example

This line means that the pin A1 which belongs to IO BANK 35, of IOB_X1Y97 site in RIOB33_X43Y97 tile has
IO_L1N_T0_AD4N_35 function.

5.3. Part specific database files 75

Project X-Ray Documentation, Release 0.0-3276-gaff076b4

76 Chapter 5. Database

Index

A
ASIC, 21

B
basic element, 21
basic logic element, 21
BEL, 21
Bitstream, 21
BLE, 21
Block RAM, 21

C
CFA, 21
CLB, 21
Clock, 21
Clock backbone, 21
Clock domain, 21
Clock region, 21
Clock spine, 21
Column, 21
Configurable logic block, 21

D
Database, 21

F
Fabric sub region, 21
FF, 22
Flip flop, 22
FPGA, 22
Frame, 22
Frame base address, 22
FSR, 21
Fuzzer, 22

H
Half, 22
HDL, 22
Horizontal clock row, 22

HROW, 22

I
I/O block, 22
INT, 22
Interconnect tile, 22

L
LUT, 22

M
MUX, 22

N
Node, 22

P
PIP, 22
Place and route, 22
PnR, 22
Programmable interconnect point, 22

R
Region of interest, 22
ROI, 22
Routing fabric, 23

S
Segment, 23
Site, 23
Slice, 23
Specimen, 23

T
Tile, 23

W
Wire, 23
Word, 23

77

	Introduction
	Collected information
	Methodology
	Important Parts

	Getting Started
	Project X-Ray
	Quickstart Guide
	C++ Development
	Process
	Database
	Current Focus
	Contributing

	Xilinx 7-series Architecture
	Overview
	Configuration
	Bitstream format
	Interconnect PIPs
	Distributed RAMs (DRAM / SLICEM)
	Glossary
	References
	Contributor Covenant Code of Conduct
	Guide to updating the Project X-Ray docs

	Database Development Process
	Contributing to Project X-Ray
	Adding New Fuzzer
	Fuzzers
	Minitests
	Tools

	Database
	Description
	Common database files
	Part specific database files

	Index

